

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2011 2. REPORT TYPE

3. DATES COVERED
 00-03-2011 to 00-04-2011

4. TITLE AND SUBTITLE
CrossTalk. The Journal of Defense Software Engineering. Volume 24,
Number 2, March/April 2011

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

36

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CrossTalk—March/April 2011

CONTENTs CrossTalk
OSD (AT&L) Stephen P. Welby
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Advisor Kasey Thompson
Article Coordinator Lynne Wade
Managing Director Brent Baxter
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-775-5555
E-mail stsc.customerservice@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the Under Secretary of Defense for Acquisi-
tion, Technology and Logistics (USD(AT&L)); U.S. Navy (USN); U.S.
Air Force (USAF); and the U.S. Department of Homeland Defense
(DHS). USD(AT&L) co-sponsor: Director of Systems Engineering.
USN co-sponsor: Naval Air Systems Command. USAF co-sponsor:
Ogden-ALC 309 SMXG. DHS co-sponsor: National Cyber Security
Division in the National Protection and Program Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and
coordinated with CrossTalk.

Trademarks and Endorsements: This Department of Defense
(DoD) journal is an authorized publication for members of the DoD.
Contents of CrossTalk are not necessarily the official views of, or
endorsed by, the U.S. government, the DoD, the co-sponsors, or the
STSC. All product names referenced in this issue are trademarks of
their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing
<http://www.luminpublishing.com>.

Crumple Zones: Absorbing Attack Effects Before They
Become a Problem
Software services that are essential for mission success must not only
withstand normal wear and tear, stresses and accidental failures, they
also must endure the stresses and failures caused by malicious activi-
ties and continue to remain usable.
by Michael Atighetchi, Partha Pal, Aaron Adler, Andrew
Gronosky, Fusun Yaman, Jonathan Webb, Joe Loyall, Asher Sin-
clair, and Charles Payne

Stop the Flow: A Damage Mitigation Framework for
Trusted Systems
A proposal for a high-level, abstract framework of Damage Mitigation
enabling the architecture and design of trusted systems to dependably
perform a mission while minimizing or eliminating the probability of
significant, unintended damage.
by Linda M. Laird and Jon P. Wade

The Need for Functional Security Testing
Due in large part to a lack of negative functionality testing, many applica-
tions perform adversely in ways not anticipated when attacked or during
normal operation. How can we achieve some measure of assurance that
applications will behave appropriately under a broad range of conditions?
by C. Warren Axelrod, Ph.D.

Fault Tolerance With Service Degradations
An examination of the propagation of faults to errors and failures and
then to faults again, with service degradation considered as a control
mechanism at each stage of the anomaly cycle.
by Dr. Gertrude Levine

An Ecosystem for Continuously Secure Application Software
A software development ecosystem composed of nine working elements
makes it possible to continuously secure application software throughout
the entire software development lifecycle and while it’s in production use.
by Mark Merkow and Lakshmikanth Raghavan

Ensuring Software Assurance Process Maturity
Successful software assurance initiatives require organizations to perform
risk management activities throughout the software lifecycle. These
activities help ensure organizations can meet software assurance goals,
including those related to reliability, resilience, security, and compliance.
by Edmund Wotring III and Sammy Migues

	 3	 From the Rugged Software Community

	34	 BackTalk

12

4

17

22

26

30

RUGGED SOFTWARE

Departments
Cover Design by Kent Bingham

mailto:stsc.customerservice@hill.af.mil
http://www.crosstalkonline.org
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines
mailto:webmaster@luminpublishing.com
http://www.luminpublishing.com

CrossTalk—March/April 2011 3

card data, and intellectual property. Moreover, nation states
exploit weak software threatening our physical, economic, and
national security. Since we depend upon software as founda-
tional infrastructure, it must be up for the task.

We need better. We deserve better. Thanks to a focus on
value, we may be on the cusp of bringing about substan-
tive change. People seek what they value. We reward and
measure what we value. We demand value. Where there is
demand, supply will follow. Rugged is an affirmative value–
not a cost or inhibitor. Rather than focus on supply, Rugged
articulates and fosters demand. Rugged is comprehended
and coveted by business people. Rugged evokes our desire
for available, survivable, supportable, defensible infrastructure
for what matters most to us. While others look for the worst in
developers, Rugged seeks to encourage the best in them. To
date, software security has focused on technology. Whoever
coined “People, Process, and Technology” was brilliant to put
people first, and technology last. We’ve skipped people and
values–and as a consequence software security has re-
mained relegated to the .0001% of the greater industry. Suc-
cess will require ubiquitous demand for the value of Rugged
infrastructure–the supply will follow.

To my delight, we’ve realized our Rugged Manifesto <http://
www.ruggedsoftware.org> was a bit off the mark. While it suc-
cessfully speaks to the hearts and values of many developers,
the most dramatic successes have instead been on the de-
mand side. People want and deserve better and more reliable
digital infrastructure than today’s status quo. They have taken
Rugged to greater heights. We’ve seen tangible examples of
where “security” has failed but “Rugged” has borne fruit.

Buyers are seeking more Rugged infrastructure. Employers
are seeking more Rugged developers. Inspired neophytes are
seeking Rugged training. Rugged is not a spectator sport.
It needs you. This is the beginning. Please take to heart the
articles in this issue as they address the problem at hand and
let’s collectively drive an end to the era of Vulnerabiquity. How
will you help us to drive toward the Rugged Age?

Joshua Corman
Research Director for Enterprise Security at The 451 Group
Co-Founder of Rugged Software

 FROM THE RUGGED SOFTWARE COMMUNITY

Vulnerabiquity and the Value
of Rugged Infrastructure

CrossTalk would like to thank the
DHS for sponsoring this issue.

As I write this CrossTalk introduction, we’re coming off of
a nightmarish patch week with over 120 patches streaming
from industry. Despite SQL injection celebrating its 10th birth-
day, the 2010 Verizon Business Data Breach Investigations
Report clocked its use in 89% of last year’s breached records.
Our reality is that software vulnerabilities are ubiquitous. Our
reality is a state of Vulnerabiqiuty. Our reality leaves much
room for improvement–and yet I remain optimistic.

In the physical world, we’ve come to depend on con-
crete, steel, and iron to support our bridges, our tunnels, our
skyscrapers ... Architects, engineers, and the like carry an
awesome responsibility to provide safe and reliable founda-
tions for society and our lives. Chances are you aren’t living in
perpetual fear that your office building will collapse upon you.
For the most part, our infrastructure is dependable.

This is not the case with our digital infrastructure and
software. Software has increasingly become modern infra-
structure. Ones and zeros permeate most aspects of our daily
existence. Yet software is not nearly as trustworthy or reliable
as our physical infrastructure. For those in security, we’ve
become painfully aware of the seemingly infinite vulnerabili-
ties in digital infrastructure. The Information Superhighway is
a battlefield. Practitioners spend millions every year deploying
critical patches to fragile software. Criminals leverage soft-
ware weaknesses to perpetrate breaches of identity, credit

http://www.ruggedsoftware.org
http://www.ruggedsoftware.org

RUGGED SOFTWARE

4 CrossTalk—March/April 2011

1. Introduction
A higher level of structural and operational endurance and

ruggedness can be achieved in software systems by strategi-
cally introducing CZs in the system architecture. Analogous to
the crumple zone in an automobile, a CZ stands before critical
components and “absorbs” the effects of attacks by localizing or
eliminating the damage they can cause and leaving the critical
components intact and unaffected. The concept of software CZ
is broadly applicable; in this paper we discuss CZs for SOA.

SOA is an architecture paradigm gaining popularity in military
and civilian information systems, many of which play important
roles in national security. Mission critical systems face a highly
contested and hostile environment in real-world operations, and
must endure and withstand malicious attacks. Potential threats
against critical SOA-based systems range from automated
network worms targeting SOA platform and supporting services
to individual vandals to well-motivated and expert foreign intel-
ligence apparatus that aim to subvert operations in the DoD en-
terprise and critical missions. The adversary objective may range
from denying access to the system, to using the system without
authorization, to tampering with or fabricating data in storage or

in transit. But all indications, including our own assessment [1],
point to serious lapses in the state of the art in SOA security. As
a technology, SOA is still maturing and various aspects of SOA,
including security features, are still being standardized. Further-
more, available SOA infrastructure and platforms do not always
implement all of the available and specified standards. The com-
plexity of SOA platforms combined with their rapid evolution can
lead to implementers under-using or misusing available security
features due to lack of expertise. Security of SOA systems is
often limited to perimeter and network level [2] security.

Some of the very features that make SOA appealing, like
loose coupling, dynamism, and composition-oriented system
construction, make securing service-based systems more com-
plicated. These features ease the development of systems, but
also introduce additional vulnerabilities and points of entry than
in self-contained, static, or stove-piped systems. In SOA, ser-
vices are advertised and are looked up by potential users, many
of which might not have the proper authorization to access or
use the requested services. It is difficult to predict at design time
exactly which actors will attempt to consume a given service
and whether they will be authorized to do so. There are various
system boundaries with a trust differential—one side is more
trustworthy than the other side. Network and perimeter security
only reinforce the “crunchy on the outside, chewy inside” view
of software systems, and is utterly insufficient for developing
rugged SOA systems.

Figure 1: Architectural Elements of the CZ

Absorbing Attack Effects Before
They Become a Problem

Crumple Zones

Michael Atighetchi, Raytheon BBN Technologies
Partha Pal, Raytheon BBN Technologies
Aaron Adler, Raytheon BBN Technologies
Andrew Gronosky, Raytheon BBN Technologies
Fusun Yaman, Raytheon BBN Technologies
Jonathan Webb, Raytheon BBN Technologies
Joe Loyall, Raytheon BBN Technologies
Asher Sinclair, U.S. Air Force Research Laboratory
Charles Payne, Adventium Labs

Abstract. A specific and currently relevant issue motivating the notion
of ruggedized software is the confluence of the threat of cyber attacks
and our increased dependence on software systems in enterprise as
well as tactical situations. Software services that are essential for mission
success must not only withstand normal wear and tear, stresses and ac-
cidental failures, they also must endure the stresses and failures caused
by malicious activities and continue to remain usable. The Crumple Zone
(CZ), a software shock absorber that absorbs attack effects before
they cause significant system failures, is an architectural construct that
we have developed and are maturing iteratively. We argue that the CZ
is an important building block for constructing ruggedized software for
supporting network-centric operations. In this paper we discuss the CZ
in the context of Service-Oriented Architecture (SOA) and describe a
configuration that has been realized and demonstrated.

We argue that CZs can absorb attacks and minimize damage.
CZs can be deployed at any trust boundary in the system. One
key place we have experimented with and will describe in this
paper is in the Demilitarized Zone (DMZ) between the services
enclave and the public network from which clients access the
services.

The rest of the paper is organized as follows. Section 2
provides an overview of the CZ architecture. Sections 3-7 de-
scribe various key features of the CZ and the components and
mechanisms responsible for them. Section 8 describes Related
Work, Section 9 provides performance metrics and a cost/ben-
efit analysis. Section 10 concludes the paper.

RUGGED SOFTWARE

CrossTalk—March/April 2011 5

2. CZ Architecture
The CZ is, in basic terms, a layer of intelligent service prox-

ies that work together to present a high barrier to entry to the
adversary, to increase the chance of detection of malicious
activities, and to contain and recover from failures and unde-
sired conditions caused by malicious attacks. These proxies
collectively implement the service’s consumer-facing application
programming interface. Different proxies help contain malicious
activity by applying security checks and controls, then approv-
ing data for release if it passes those checks. A key principle of
the CZ’s design is that only data that has been inspected and
approved by one or more proxies is passed along to the service.
Because the CZ inspects and processes untrusted data, it is
expected to fail occasionally. Automatic monitoring and re-start
of the proxies inside the CZ is another key design feature.

Effectiveness of the CZ depends on three requirements:
•	The CZ must be non-bypassable. All consumer requests to

	 the service must be mediated through the CZ.
• The CZ must cover both known and unknown attacks.

	 It should be configurable so defenses can be tailored to 	
	 the system’s operational requirements and the potential
	 threat environment.

• The CZ must preserve the integrity of data that flows
	 through it to prevent man-in-the-middle scenarios run by
	 corrupted CZ components.

To meet the first requirement, making the CZ non-bypassable,
conventional network level protections such as firewalls and
routers can be used. To make it difficult for adversaries to
discover and access protected services, CZ presents a very
small exploitable surface to untrusted service consumers. This
is accomplished by placing the CZ behind a firewall that uses
single packet authorization (SPA). On the CZ’s side of the fire-
wall, termination proxies (TPs) are used as the entry point for all
incoming client connections.

The second requirement, varied and configurable defenses,
is achieved through a set of proxies that implement specific
checks and are organized in a mechanism proxy cloud (MPC).
The MPC monitors observable behavior of requests. We have
implemented proxies that check assertions on application data,
e.g., by checking serialization fields, as well as canary proxies
that consume application data and thereby absorb attacks, e.g.,
by crashing or getting corrupted.

The third requirement, preserving data integrity within the
CZ, is achieved by service layer virtual private groups (slVPG).
The Splitter component replicates Secure Sockets Layer (SSL)
streams between clients and TPs to the MPC without breaking
cryptographic envelopes. Key management components that are
also part of the slVPG selectively share keys from the TPs to the
MPC so that the new streams can be decrypted for inspection.

3. SPA
The first layer of defense an attacker coming from the outside

needs to overcome is the CZ’s firewall. In addition to standard
restrictions on open ports and IP ranges, we use SPA [3] to
implement a least-privilege policy that allows access to listening
ports only to authenticated clients.

Figure 2 illustrates the general concept behind SPA using
a client (on the left) trying to access the service (on the right)
through the firewall (in the middle). The firewall starts out by
blocking all traffic to the service. A legitimate client starts the
interaction sequence (in step 1) by sending a cryptographic-
based credential that is encoded within a single packet to the
firewall. After verifying client identity and authorizing the client’s
connection request, the SPA server side component grants
the client the right to establish a single Transmission Control
Protocol (TCP) connection (for a limited amount of time) by add-
ing specific firewall rules (step 2). Finally, the client establishes
a normal TCP connection in step 3. A client without the proper
credential is denied access.

SPA limits exposure of the protected enclave to port scans,
remote OS fingerprinting, and low-level network stack exploits
(such as TCP connection flooding). Port scan or OS finger-
printing attempts for reconnaissance will return no informa-
tion unless the adversary has stolen or forged cryptographic
credentials.

Figure 2: SPA

4. TP
TPs are advertised as service endpoints for the client, while

the actual service is accessible only from the TP. The client be-
lieves it is connecting directly to the service, but the TP provides
a barrier between the service and the client. The TP escrows
client-server data until it is analyzed and determined to be safe
to release.

One key design decision for constructing the TP was to keep
its logic minimal and therefore make it less prone to exploits.
For that reason, the TP does not itself analyze any client data
because the analysis process might introduce corruption or
crash faults. Instead, data analysis is performed in the MPC (see
Section 5). If traffic passes all checks, the MPC sends autho-
rization messages to the TP stating how many bytes of client
data have been approved for release. The TP requires active
approval of client data by the MPC within a certain amount of
time. If the MPC detects anything wrong with the data or if the
MPC fails to send a timely approval message, the connection to
the client is closed by the TP and the escrowed data is dis-
carded. Alternatively, when the MPC approves a certain number
of bytes for release, the TP releases that amount of data from

6 CrossTalk—March/April 2011

RUGGED SOFTWARE

escrow and sends it to the service. One key benefit of the split
check-escrow model is that corrupted nodes in the MPC cannot
directly affect the integrity of the application stream since MPC
nodes only operate on a copy of the data and cannot alter the
data that is released from the TP’s escrow buffer. On the other
hand, corrupted nodes in the MPC can incorrectly approve
or disapprove release of escrowed data because the TP only
receives instructions to release a certain number of bytes. This
issue is dealt with by using voting on the release instruction,
described in Section 5.

Crashes in the MPC will prevent approval messages from
reaching the TP and will then result in the TP closing the con-
nection to the client. All incoming client connections are routed
through the TP–if the TP were to crash, many client connections
would be terminated. Isolating the possible crashes in the MPC
limits the number of clients affected by any crashes. Watchdogs
help the system recover from crashes and are discussed in
more detail in Section 7.

A single TP would be a single-point-of-failure in the CZ.
This can be addressed by incorporating multiple TPs in the CZ,
deployed in a manner analogous to load balancing. This provides
isolation and replication to this critical part of the CZ. Addition-
ally, in conjunction with the watchdog for the TP, the TPs can be
moved and restarted to provide additional fault tolerance.

5. MPC
The MPC is a metaphor for a loosely coupled set of prox-

ies that perform checks on application data. Figure 3 shows a
detailed version of the MPC, which has a hierarchical structure.
At the bottom of the hierarchy there are individual mechanism
proxies (MPs) implementing check functionality, the next level
up are the proxy groups (PGs), and finally the neighborhoods.

MPs inspect the content of the incoming traffic for attacks.
For example, a rate proxy will raise a flag if the session has an
unusually high message rate. Similarly a size proxy will reject
a message with huge user data. Such proxies are useful for
detecting known attacks, i.e., high message rate leading to
denial of service, and big objects leading to heap overflow. To
protect against novel attacks we utilize MPs that simulate (to
a certain extent) the behavior of the protected service. If the
simulated behavior is close enough to the actual behavior the
effects of the novel attack can then be detected, absorbed, and
managed by the proxy. The Canary proxy is an example based
on this technique. Like the historical canary in a coalmine, a
canary proxy will be affected by the attack in the same way
the protected entity would. Canary is designed to parse the
incoming stream the same way the server would thus protect-
ing the deployed service against attacks that might be caused
by arbitrarily malformed streams or arbitrary attack commands
encoded in serialized data (for example, serialized instances of
Java classes).

PGs represent a coordinated collection of MPs that together
perform checks on application traffic. PGs are associated with
SSL connections; each SSL connection between clients and
TPs will be forwarded (through the slVPG) to a dedicated PG.
This assignment can be controlled at runtime based on avail-

able resources. The proxies within a group coordinate with a
group controller (one controller per group), which regulates the
control flow between the proxies in the group. Intuitively, the
group controller enforces an order of execution on the proxies
for improved protection. For example, to prevent unnecessary
deaths of the canary proxy, we can chain a blacklist proxy, which
screens for instances of known malicious classes, before the
canary. The group controller is also responsible for communicat-
ing with the TP to notify it of the number of bytes cleared by all
of the proxies in the group.

Figure 3: SPA

Neighborhoods represent fault isolation boundaries and are
associated with processes in the current implementation model.
For example, a corrupted MP running in Neighborhood 1 cannot
directly access or spread to other MPs running in Neighborhood
2. A neighborhood can host multiple groups for load balancing
purposes. Neighborhoods can be distributed within the MPC on
different physical hosts and virtual machines.

In most cases, the crash of a canary like proxy also implies
the crash of all components in the same neighborhood. This
means that sessions of all clients sharing the same neighbor-
hood will terminate. However, clients connecting through other
neighborhoods will not be affected and future connections will
go through the remaining neighborhoods.

To address the issue of a malicious MP incorrectly instructing
the TP about escrow release mentioned earlier, one needs to
assign redundant PGs to a single SSL connection and vote on
the group’s release decision. If the PGs are sufficiently indepen-
dent, known fault tolerance schemes can be employed to detect
and tolerate the desired number of corrupt PGs.

6. slVPGs
At a high level, the function performed by the slVPG is to a)

replicate the encrypted stream without losing any application
data, b) share keys so that the receiving end points (RCVRs) in
the MPCs can decrypt and verify the integrity of the replicated
SSL packets, and c) make the decrypted stream available to
the MPs. We explored various implementation options including
libpcap-based packet sniffers [4] to replicate the traffic stream,
and settled on a netfilter-based approach [5] because the latter
provides more robustness against packet loss.

In this approach, as soon as a client connection is initiated,
the splitter component, as shown in Figure 4, starts to buffer
traffic from that connection using a netfilter module. When the
SSL handshake is completed and the PG in a MPC neighbor-

CrossTalk—March/April 2011 7

RUGGED SOFTWARE

hood has been initialized to handle the new connection, the Key
Distribution Center at the TP and Key Managers in the neigh-
borhoods communicate to exchange the SSL keys. In parallel,
the splitter starts to forward the buffered data to the RCVRs.
The RCVRs buffer data until the key exchange step is com-
pleted, and make the decrypted data available through stream
interface as soon as the necessary keys are available. Note that
if the client-server messages are signed and encrypted at the
application level, an additional level of key sharing is needed to
make the decrypted data available for inspection and processing
to the proxies.

Figure 4: slVPGs

exited. The log analyzer can take proactive actions–either by
modifying the firewall to prevent connections from a particular
IP address or by assigning connections from an IP address to a
high-risk neighborhood to further protect other client connec-
tions from potential crashes.

The watchdogs and logging ensure that the CZ remains
available, is resilient to attacks, and is proactive in preventing or
minimizing the effects of future attacks.

8. Related Work
Port Knocking [6] is similar to SPA, but SPA has the fol-

lowing advantages over Port Knocking: SPA is based on strong
cryptographic ciphers, making spoofing more difficult, SPA
packets are non-replayable, and SPA is robust against trivial
sequence busting attacks.

SPA Implementations take different approaches; we
explored two open-source implementations, Fwknop [7] and
Knockknock [8]. These implementations differ in ways that
might impact which one is chosen for a specific deployment.
For packet encoding, Fwknop uses dedicated User Datagram
Protocol packets while Knockknock encodes requests in TCP
headers. This implies that Knockknock requires admin privileges
on the client to generate customer TCP headers. For packet
capturing, Fwknop uses libpcap (a large C library) to passively
sniff SPA packets. Knockknock reads packet information from
kern.log through a daemon that restricts root privileges to only
~15 lines of Python code. In our view, this makes the Knock-
knock daemon less likely to be subverted. Regarding functional-
ity, Fwknop provides feature rich support for service ghosting
and port randomization, while Knockknock follows a minimalistic
approach.

Web Application Firewalls (WAFs) are designed to
protect Java 2 Platform, Enterprise Edition applications and web
services (WS) against common vulnerabilities listed in the Open
Web Application Security Project top 10 list, e.g., Structured
Query Language injection. While most WAFs are deployed at
DMZ boundaries only and are hosted on hardened appliances,
CZs are based on a lightweight distributed software paradigm
that allows us to surround a selected set of services with
fine-grained defenses. WAFs support only WS-related interac-
tion models and lack support, for example, for other distributed
protocols such as Java Remote Method Invocation (RMI).

Application Server Clustering ensures availability of ser-
vices by transparently rerouting traffic to redundant application
servers in the presence of attacks that affect service availability.
Load-balancers and clusters can work in conjunction with CZ to
implement voting.

Extensible Markup Language (XML) Appliances pro-
vide security through schema validation, WS-security functions,
and assured transformation of content using standards like
Extensible Stylesheet Language Transformations. While there
is some similarity between CZ MPs and functionality provided
by XML appliances, XML appliances are based on a single
hardened platform and don’t provide advanced features such
as canary proxies, diverse proxy implementation, and automatic
restart.

7. Recovery Focused Adaptation
The CZ is equipped with adaptation mechanisms that enable

recovery and containment of attack effects. TPs and each MPC
neighborhood have a watchdog that monitors the respective
components and automatically restarts them when a crash is
detected. A restarted component reconnects itself to its peers
and begins handling new client connections. The watchdogs
poll the components in a configurable interval (one second in
our test configuration). Component restart time is dependent on
configuration and load details. In our test configuration, compo-
nents start in less than one second.

The CZ also maintains a database of log messages with
database permissions set so that CZ components can write to
the database (but not read) and only designated analysis com-
ponents can read from the database (but not write). The logging
mechanism collects data that will help the system prevent or
minimize future attacks. For example, each time a check does
something that might cause the neighborhood to crash (such as
checking a serialized object through the canary proxy), it enters
a log message. When it finishes executing the code that may
cause a crash, it enters another log message. These log mes-
sages contain timestamps as well as the IP information about
the connection under analysis.

The log analysis component analyzes the data collected in the
log database. In particular it looks for indications that a particular
client connection caused a crash. For example, a neighborhood
that crashed might have a log message indicating that a block
of potentially-crash-producing code was entered, but was never

8 CrossTalk—March/April 2011

RUGGED SOFTWARE

Cross Domain Guards mitigate information exchange risks
between different classified networks. New generation SOA-
based guards [9][10] have started separating filter functionality
into services that can be hosted outside of appliances, similar to
the MPC. Compared to the work described here, existing certifi-
cation and accreditation requirements play a more important role
in guards, preventing the use of advanced techniques that don’t
fit current practices, e.g., use of canary proxies and probabilistic
design algorithms.

9. Experimental Validation

Figure 5: Experiment Configurations

at once. We believe that this improvement is due to the CZ shar-
ing a connection to the JBoss server for all of the clients versus
a separate connection to the JBoss server for each client in the
control condition. This experiment shows that although there is
overhead for a single client using the CZ this may be mitigated
when multiple clients connect through the CZ.

Figure 6: Experiment results for multiple client connections

To evaluate the performance and robustness of the current
proof-of-concept prototype CZ, we conducted multiple internal ex-
periments. The system under test consisted of a Java RMI service
and a MPC with four MPs, including rate, size, white list, and canary
checks. Figure 5 shows the base and control conditions used.

We experimented with two categories of client messages:
computation intensive and data intensive. The compute intensive
messages are short but require the JBoss server to perform a
mathematical calculation. The data messages were 1KiB, 10KiB,
and 100KiB in size and required the JBoss server to process the
data. As one might expect, the overhead of the CZ increases as
the messages increase in size. This overhead ranges from 18%
for the computation message to 84%, 803%, and 4040% for
1KiB, 10KiB, and 100KiB data messages respectively.

Our future work includes investigating and optimizing our
code to handle large messages more efficiently. We suspect
that the extra Input/Output (I/O) load analyzing the data could
be responsible for the slower processing.

Additionally we investigated server response time when mul-
tiple clients make requests simultaneously. The results for test-
ing one, five, and 10 clients are shown in the box plot in Figure
6. Interestingly, the response times for the CZ improve relative
to the control condition as more clients are added. In fact,
the median response time for the CZ is less than the median
response time for the control condition when 10 clients connect

As shown in Figure 5, all of the CZ functions, including the ter-
mination proxy and the MPC, were hosted on a single host. While
this configuration introduces minimal cost overhead in terms of
additional hardware costs, I/O operations on the single machine
will become a choke point given enough load. We plan to investi-
gate other deployments in the future in which MPs are distributed
across a set of machines in a load-balanced way. The expectation
is that load-balanced configuration will decrease round trip times
under heavy loads although increasing hosting costs.

10. Discussion and Next Steps
The CZ design and prototype described in this paper provides

a promising foundation for protecting critical services from
malicious attacks that succeed to a degree, i.e., get past the
traditional access control and authentication services. This
means that the CZ should be effective against novel, zero-day,
and insider attacks.

The degree to which the CZ is effective against a particu-
lar attack depends greatly upon the extent to which the MPC
replicates the server functionality and the kind of cross check-
ing algorithms employed. In the extreme case, the Canary Proxy
would replicate most of the server functionality, and would be
susceptible to, and therefore provide protection against any
attack that would be effective against the service, and the proxy
group-TP processing would be made Byzantine Fault-Tolerant.

CrossTalk—March/April 2011 9

RUGGED SOFTWARE

The amount of redundancy and protocol overhead must be
weighed against the perceived threat model. One of the next
steps that we are going to undertake is to evaluate the benefits
and costs of protections and simulated functionality in the MPC,
and how it fits particular threat models and platform perfor-
mance requirements.

Similarly, the current prototype only protects the critical server
from attacks by rogue clients. However, a fully protected system
will want to protect the return path also, i.e., protect a client from
a server that might have been compromised. To accomplish this,
the return path from the client and server must go through a CZ.
This CZ should be similar to the one on the request path, except
that the functionality simulated by the Canary Proxy will involve
processing of the response.

The current prototype concentrates on protecting server calls
made over RMI. Although this is a valid model, representing calls
made by composed clients and servers, a large class of client-
server interactions in SOA are through WS interchanges, e.g.,
using Simple Object Access Protocol. We are currently in the
process of designing a CZ that works with WS interfaces.

Finally, to substantiate our claims that the CZ can protect
against large classes of known, zero-day, novel, and insider at-
tacks, we plan to conduct experiments and collect concrete and
empirical evidence. As we have done in prior research projects
[11], we plan to conduct independent red team exercises to
evaluate the efficacy of the CZ to protect against attacks by
motivated and determined adversaries. In these exercises, an
independent red team, experienced in cyber attacks and with
insider knowledge of the system being protected, but not part
of the development team, will launch attacks against the system.
We will evaluate the ability of the CZ to absorb the attacks and
protect the service, and the extent of the class of attacks that
the CZ is effective against. To the extent possible, we will mea-
sure the difference in time to effectively compromise the system
with and without CZ.

Acknowledgments
The authors would like to acknowledge the support and col-

laboration of the U.S. Air Force Research Laboratory (AFRL)
Information Directorate. This material is based upon work sup-
ported by the Air Force Research Laboratory under Contract No.
FA8750-09-C-0216.

Michael Atighetchi is a senior scientist
at BBN’s Information and Knowledge
Technologies business unit. His research
interests include cross-domain information
sharing, security and survivability architec-
tures, and middleware technologies. Mr.
Atighetchi has published more than 35
technical papers in peer-reviewed journals
and conferences, and is a senior member
of the IEEE. He holds a master’s degree
in computer science from University of
Massachusetts at Amherst, and a master’s
degree in IT from the University of Stut-
tgart, Germany.

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-1679
Fax: (617) 873-4328
E-mail: matighet@bbn.com

Dr. Partha Pal is a lead scientist at Ray-
theon BBN Technologies. He leads the sur-
vivability research thrust at Raytheon BBN,
and has served as the principal investigator
in a number of Defense Advanced Re-
search Projects Agency (DARPA), Depart-
ment of Homeland Security (DHS), and
Air Force Research Laboratory Research
& Development (AFRL R&D) projects
in the areas of survivability and informa-
tion assurance. He has published over 65
papers in refereed journals, conferences
and workshops, has been in the program
committees of multiple workshops and con-
ferences, and has been a co-organizer of
the Recent Advances in Intrusion Tolerance
workshop for the past two years.

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-2056
Fax: (617) 873-4328
E-mail: ppal@bbn.com

ABOUT THE AUTHORS

mailto:matighet@bbn.com
mailto:ppal@bbn.com

10 CrossTalk—March/April 2011

RUGGED SOFTWARE

Dr. Aaron Adler is a Scientist in BBN’s
Information and Knowledge Technolo-
gies business unit. His research interests
include distributed systems, artificial intel-
ligence, and human computer interaction,
specifically sketch recognition. He has a
Ph.D. in Computer Science from Massa-
chusetts Institute of Technology (2009).

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-3517
Fax: (617) 873-2794
E-mail: aadler@bbn.com

Andrew Gronosky is a staff engineer
at Raytheon BBN Technologies. He has
experience developing a variety of software
applications including data analysis and
visualization, digital signal processing, and
parallel and distributed systems. He holds a
Master of Science degree in mathematics
from Rensselaer Polytechnic Institute and
is a member of the IEEE and the Associa-
tion for Computing Machinery.

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-3517
Fax: (617) 873-3486
E-mail: agronosk@bbn.com

Dr. Fusun Yaman is a Scientist in BBN
Technologies. Her research interests are in
distributed planning, spatio-temporal rea-
soning and machine learning specifically
learning user preferences from observa-
tions. She has a Ph.D. in Computer Science
from University of Maryland at College
Park (2006).

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-3966
Fax: (617) 873-2794
E-mail: fyaman@bbn.com

ABOUT THE AUTHORS cont.

Jonathan Webb is an engineer in BBN’s
Information and Knowledge Technologies
business unit. Over 20 years at BBN, Mr. Webb has been
involved in a wide range of software development projects
including simulation of dynamic systems, web based data
management systems, middleware for information man-
agement, and cross domain information sharing.
Mr. Webb has a master’s degree in aeronautics and astro-
nautics from the Massachusetts Institute of Technology.

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-3321
Fax: (617) 873-4328
E-mail: jwebb@bbn.com

Dr. Joseph Loyall is a principal scientist at Raytheon
BBN Technologies. He has been the principal investiga-
tor for Defense Advanced Research Projects Agency and
AFRL research and development projects in the areas of
information management, distributed middleware, adaptive
applications, and quality of service. He is the author of
over 75 published papers; was the program committee
co-chair for the Distributed Objects and Applications con-
ference (2002, 2005); and has been an invited speaker at
several conferences and workshops. Dr. Loyall has a doc-
torate in computer science from the University of Illinois.

Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138
Phone: (617) 873-4679
Fax: (617) 873-4328
E-mail: jloyall@bbn.com

Asher Sinclair is a Program Manager at AFRL’s Informa-
tion Directorate working in the Enterprise Information
Management Branch at the Rome Research Site.
His work history includes enterprise systems manage-
ment, service-oriented architectures, information-level
quality of service, and network security. He has contrib-
uted to more than 12 technical papers and conference
proceeding publications. He holds a bachelor’s degree in
Computer Information Systems from the State University
of New York and a master’s degree in Information Man-
agement from Syracuse University.

AFRL
525 Brooks Road
Rome, NY 13441
Phone: (315) 330-1575
E-mail: asher.sinclair@rl.af.mil

mailto:aadler@bbn.com
mailto:agronosk@bbn.com
mailto:fyaman@bbn.com
mailto:jwebb@bbn.com
mailto:jloyall@bbn.com

CrossTalk—March/April 2011 11

RUGGED SOFTWARE

1.	 Michael Atighetchi, Partha Pal Andrew Gronosky, “Understanding the Vulnerabilities of a SOA
	 Platform - A Case Study,” in The 9th IEEE International Symposium on Network Computing
	 and Applications (IEEE NCA10) , Cambridge, MA USA, 2010.
2.	 Eric Rescorla, SSL and TLS: Designing and Building Secure Systems. United States:
	 Addison-Wesley Pub Co., 2001.
3.	 Michael Rash. (2006) Single Packet Authorization with Fwknop. [Online].
	 <http://www.cipherdyne.org/fwknop/docs/SPA.html>
4.	 (2010, September) TCPDUMP home page. [Online]. <http://www.tcpdump.org/>
5.	 (2010, September) Netfilter Homepage. [Online]. <http://www.netfilter.org/>
6.	 Martin Krzywinski. (2005) portknocking.org.
	 [Online]. <http://www.portknocking.org/docs/portknocking_an_introduction.pdf>
7.	 CipherDyne. (2010, September) CipherDyne. [Online]. <http://www.cipherdyne.org/fwknop/>
8.	 Moxie Marlinspike. (2010, September) KnockKnock.
	 [Online]. <http://www.thoughtcrime.org/software/knockknock/>
9.	 Jason Ostermann. (2009) Presentation at UCDOM Annual Conference: Raytheon DSCDS Intro.
	 [Online]. <http://www.ucdmo.gov/conference09/Ostermann_Raytheon%20
	 DSCDS_09022009.pdf>
10.	BAH. (2009) Presentation at the UCDMO Annual Conference: BAH DSCDS Overview.
	 [Online]. <http://www.ucdmo.gov/conference09/Morris_BAH%20DSCDSoverview_
	 final_09022009.pdf>
11.	Joe Loyall Michael Atighetchi, “Meaningful and Flexible Survivability Assessments:
	 Approach and Practice,” in CrossTalk - The Journal Of Defense Software Engineering,
	 March/April 2010, pp. 12-18.

REFERENCESABOUT THE AUTHORS cont.

Charles Payne is a Member of the Technical
Staff at Adventium Labs in Minneapolis, Min-
nesota. He has been a Principal Investigator
for the Office of Naval Research in the area
of virtualized cross domain support and has
been a key contributor to DARPA, DHS and
AFRL programs investigating high assurance
security architectures. He has published more
than a dozen papers and served as Program
Chair for the Annual Computer Security Ap-
plications Conference (2009). Mr. Payne has
a Masters of Science degree in Computer
Science from The College of William and Mary
in Virginia.

Adventium Labs
111 Third Avenue South, Suite 100
Minneapolis, MN 55401
Phone: (612) 817 2525
E-mail: charles.payne@adventiumlabs.org

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
three areas of emphasis we are looking for:

Protecting Against Predatory Practices
September/October 2011

Submission Deadline: April 8, 2011

Software’s Greatest Hits and Misses
November/December 2011

Submission Deadline: June 10, 2011

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

http://www.cipherdyne.org/fwknop/docs/SPA.html
http://www.tcpdump.org/
http://www.netfilter.org/
http://www.portknocking.org/docs/portknocking_an_introduction.pdf
http://www.cipherdyne.org/fwknop/
http://www.thoughtcrime.org/software/knockknock/
http://www.ucdmo.gov/conference09/Ostermann_Raytheon%20DSCDS_09022009.pdf
http://www.ucdmo.gov/conference09/Ostermann_Raytheon%20DSCDS_09022009.pdf
http://www.ucdmo.gov/conference09/Morris_BAH%20DSCDSoverview_final_09022009.pdf
http://www.ucdmo.gov/conference09/Morris_BAH%20DSCDSoverview_final_09022009.pdf
mailto:charles.payne@adventiumlabs.org
http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

12 CrossTalk—March/April 2011

RUGGED SOFTWARE

Linda M. Laird, Stevens Institute of Technology
Jon P. Wade, Stevens Institute of Technology

Introduction
A Trusted System is one that dependably performs its mission

while minimizing or eliminating the probability of significant,
unintended damage. The ability to develop, deploy, and maintain
trusted systems, those that are safe, secure, dependable, and
survivable, is an unsolved problem. There are calls for papers
looking for new approaches to address these issues [1] [2] as
radiation systems continue to occasionally kill people [3], cars
occasionally refuse to stop, and rogue botnets are available for
hire [4]. If anything, our experiences in the last 30 years of build-
ing software intensive systems have shown that software and
systems without defects or vulnerabilities are, for all practical
purposes, non-existent. This is not to say that the utmost should
not be done to eliminate defects and vulnerabilities. It must. But
time and effort are limited, as are human abilities and knowl-
edge, while system complexities continue to increase. We must
assume that defects and vulnerabilities will always exist.

This article proposes a very high-level, abstract framework
of Damage Mitigation based upon this premise of imperfection.
Damage will be defined as any significant negative conse-
quence of a system’s operation. The intent is that this systems
approach to Damage Mitigation will facilitate new ideas on how
to improve the fundamental properties of trustability of systems
and encourage the creation of trustable architectures and
designs for critical systems. The central idea is that there exists

A Damage Mitigation
Framework for
Trusted Systems

Abstract. This article proposes a very high-level, abstract framework
of Damage Mitigation to enable the architecture and design of trusted
systems, those that dependably perform a mission while minimizing or
eliminating the probability of significant, unintended damage. This frame-
work is based upon the premise of system imperfection, consisting of a
Trusted Systems Model and a Damage Process Model. The intent is that
this systems approach to Damage Mitigation will improve the ability to
analyze the Damage Mitigation capabilities of a system and encourage
new solutions.

a causal event chain that can lead to damage and a loss in
system value. At each point within the chain, there are potential
“chokepoints” where it may be possible to stop the flow from an
instigating event to a damage event.

The broader framework and the different viewpoint of this
article hopefully will encourage and suggest new solutions to
the problem of building, engineering, and operating systems that
need to be trusted. Alan Kay once remarked, “A change in per-
spective is worth 80 IQ points.” The experience to date has been
that in using this framework, additional solutions and mitigation
strategies to past accidents became apparent.

System Trustability Model
The Trustability Model shown in Figure 1 has three attributes:

Trustability Properties, Threats to Trustability, and Means to
Achieve Trustability. It is based upon the Dependability Model
in [5]. This model shows that there is a strong relationship
between the various properties of trustability, the threats to
those properties, and the means to achieve those properties.
For example, Threat Prevention has a positive impact on all
of the properties of trustability, with perhaps the exception of
resilience. Threat Tolerance has a positive impact on all of the
properties. Being able to tolerate and eventually remove loss
events improves resilience, availability, and security.

In this model, safety reflects the system’s ability to protect
its users and environment from both physical and non-physical
threats. Security describes the ability of the system to protect
itself with respect to the confidentiality of its assets and its
overall integrity. Dependability ensures that the system provides
its services and supports its mission when it is required. The
properties of availability, reliability, and maintainability are all
elements which constitute dependability. Finally, survivability is
a measure of the system’s capability to support the attributes
noted above despite adverse environmental effects. The proper-
ties of robustness and resilience contribute to this capability.

Figure 1: Trustability Model

Properties of Trusted Systems

Stop the Flow

CrossTalk—March/April 2011 13

RUGGED SOFTWARE

System safety, security, dependability and survivability are
proposed as the critical properties of trustability. The relative im-
portance and need for each individual property differ by domain,
application, and context of the system. The definitions of these
terms and those for some of their constituent properties that will
be used in this work are described below.

Safety is the ability of a system to perform predictably under
normal and abnormal conditions, thereby preventing accidental in-
jury, death, or damage. This definition has been adapted [6] with a
key change being the addition of the damage concept. Although
safety, in general use, typically has the connotation of physical
safety, with software intensive systems, safety is the antithesis of
dangerous and can relate to non-physical safety as well.

Security is the ability of a system to thwart attempts to exploit
defects and vulnerabilities to disrupt the system or the value
it produces. (Adapted from [7].) Security adds the concepts of
perpetrators and malicious attackers.

Dependability is “the ability to deliver service that can justifi-
ably be trusted.” [5] The dependability of a system is based upon
its reliability, availability, and maintainability. The relative impor-
tance for each of these is determined by the context in which
the system is being used.

Survivability is the ability of a system to function during and
after a natural or man-made disturbance. (Adapted from [8].) For
a given application, survivability must be qualified by specifying
the range of conditions which the system will survive along with
the minimum acceptable levels of safety, security, and depend-
ability. Resilience and robustness are two important properties
which determine survivability.

Threats to Trusted Systems
A Threat to a Trusted System is anything that can potentially

cause the system to have significant unintended damage, includ-
ing not being able to complete its mission successfully. This
definition includes both malicious and unintended threats. In this
model, the set of threats includes actors, faults, failures, hazards,
and loss events.

The term Actor is borrowed from Unified Modeling Language
(UML) and well suited to this use. Within this context, an Actor is
anything that instigates execution of the system. Actors include
humans, systems (external and internal), the physical world, and
any other external object that can act upon the system. Actors
instigate execution of the system, and in doing so provide inputs,
friendly and malicious, planned and unexpected, that can cause
failures, hazards, and ultimately, significant damage.

A fault is a defect or vulnerability in the system that may or
may not cause a failure. A fault might be a memory leak that
can lead to a system crash or incorrect execution. An exploitable
buffer-overflow vulnerability is a fault. A requirements defect is
a fault. For software, if the code that contains the faults is never
executed, or never executed under the precise conditions that
cause the fault to occur, then the system never fails due to this
fault. Faults are defects in the system that may or may never be
seen in operation.

A failure occurs when the object (component, human, system)
can no longer create value (carry out its mission) or no longer deliv-
ers the correct service. Failures only occur during system execution.

A hazard is a state or set of conditions of a system that, to-
gether with other conditions in the environment of the system,
will probabilistically lead to a loss event, be it an accident or
incident. A hazard represents the possibility of a loss event.
Hazards have the following attributes: severity, likelihood of
occurrence, exposure (duration), and likelihood of a hazard
leading to an accident.

A loss event, within the context of this work, is an accident,
incident, or other unsuccessful completion of the mission of the
system. Loss events vary in significance. An incident is consid-
ered to be a loss event that involves minor or no loss but with
the potential for significant loss under different circumstances. A
loss event can be mitigated to minimize damage.

Means to Achieve Trusted Systems
Trustability is achieved when loss events either do not occur

or the unintended damage caused by them to the stakeholders
is deemed to be acceptable. In order to achieve trustability, the
threats to trustability need to be mitigated. There are a signifi-
cant number of mitigation techniques categorized below. While
there have been numerous attempts at this categorization, this
work will use the following definitions:

1. Threat Prevention: the set of techniques to assure that the
threat is not allowed into the system.

2. Threat Removal: the set of techniques to remove threats
from the system.

3. Threat Tolerance: the set of techniques that prevent a
threat from causing damage.

4. Threat Management: the set of techniques to minimize the
potential damage.

5. Threat Detection: the set of techniques that allow threats to
be observed. Threat detection could be included as an enabler
to all of the other Means to Achieve. In this work, it is noted
separately as it is required to demonstrate that the system is
trustworthy. Monitoring allows the current threat patterns to be
understood and potentially supports the prediction of future
threat patterns.

All of these techniques have advantages, although threat
prevention is obviously preferred. If malicious actors never
contact the system, or vulnerabilities never exist, the damage
that they might cause is totally mitigated. When threats can-
not be prevented or removed, threat tolerance, which stops the
propagation of potential damage, is useful. Threat tolerance
includes basic techniques such as rollback and recovery. Threat
management can be used once a threat condition is recognized
and until the root cause can be addressed. For example, quar-
antining off parts of a system that have been compromised is a
threat management technique.

Damage Process Model
A casual model of the Damage Process is shown in Figure 2,

consistent with the definitions above. It is a set of steps, starting
with an actor, and terminating with damage. If a fault is encoun-
tered, and it causes a failure, it can create a hazardous situation
that under certain circumstances can cause a loss event, which,
if not properly mitigated can cause unacceptable damage. It
is important to emphasize that this damage process is one

14 CrossTalk—March/April 2011

RUGGED SOFTWARE

tings before first use (which she did before the third use).
e.	The system had safety checks (either internal to the

algorithms or even on the radiation devices) that prevented
extremely high dosage radiation or forced the operator to
repeatedly confirm that this high level was intended.

f.	 The overall system was designed to first test the radiation
settings on a radiation “dummy,” with safe dosage confirmation
before continuing with a live patient.

g.	There were new medicines that could reverse the effects
of over-radiation.

This is an example of different solutions that are relatively
easy to uncover by considering the damage event as a process
with many possible intervention points, rather than identifying
the problem as a bug in the code. These solutions are examples
of possible “safe(r) designs.” From a systems viewpoint, solution
f is especially interesting because it stops incorrect radiation in
almost all cases, no matter the cause. It would “Stop the Flow”
before any loss event could occur.

Discussion of Mitigation Techniques
It is important to realize that the mitigation techniques of

focus here are for the execution process, not the development
process. Preventing faults and vulnerabilities from entering
the system during development is critically important and is a
relatively well developed field, but in this model, we assume that
regardless of the quality of the developers and the development
process, faults and vulnerabilities will exist.

To illustrate the ease of uncovering mitigation techniques,
examples of generic techniques for each chokepoint are listed.
These generic techniques could be easily expanded and used as a
brainstorming tool or checklist during the design of critical systems.

The first chokepoint focuses on actors and fault preven-
tion. Some possible issues might arise from unauthorized
users, incorrect usage, or system overload. Example mitigation
techniques include denying access to unauthorized users of the
system, denying access to “untrusted” external systems, deliber-
ate shedding of users in overload conditions, and input and
interface validation.

At the second chokepoint, typical examples would be traditional

scenario of a system-in-the-large in execution. No damage oc-
curs unless the process is initiated. In some respects, it could be
considered a high-level scenario or use case.

As an example, consider the St. Vincent’s radiation tragedy
[3], in which at least two patients were killed by incorrectly ap-
plied radiation dosage, apparently due, in part, to defects in the
fault management software and system design. “… as (the tech-
nician) was trying to save her work, the computer began seizing
up, displaying an error message. An error message asked
(the technician) if she wanted to save her changes before the
program aborted. She answered yes. … (the Doctor) approved
the new plan.” Two rounds of radiation treatment were given. The
technician ran a test to verify the settings before the third round.
“What she saw was horrifying: the multileaf collimator, which
was supposed to focus the beam precisely on his tumor, was
wide open.” [3]

The patient subsequently died from the incorrect and exces-
sive radiation. The equipment provider subsequently “distributed
new software, with a fail-safe provision.” [3]

Each step leading up to the final damage result is considered
a potential threat to the trustability of the system. At each step,
there is the possibility of mitigating the threat to prevent or mini-
mize the final damage. There are possible intervention points,
or chokepoints, after each step of the process model, as shown
below in Figure 3.

At each chokepoint, techniques could be applied to both
monitor and mitigate potential threat conditions. Using this ra-
diation example, the flow to the significant damage event could
have been stopped if:

a.	The technician did not save her work when the system
was crashing. Additional training or documentation may have
worked.

b.	The system had improved fault handling that either stored
the work correctly or did not allow potentially compromised
configurations to be stored.

c.	The display of the information to the doctor, who had to
sign off on it, may have been complex and difficult to verify. A
visual display/simulation may have improved it significantly.

d.	The technician was required to run a test to verify the set-

Figure 2: Damage Process Steps

Figure 3: Chokepoints

CrossTalk—March/April 2011 15

RUGGED SOFTWARE

techniques such as robust fault handling, fault tolerance, fault
tolerant middleware and software rejuvenation, or the use of error
correction codes in hardware storage or communication systems.

At the third chokepoint, between failures and hazards, typical
techniques would include failure management capabilities, such
as recovery, redundancy, an overarching failure management
strategy, as well as fail-safe and fail-operational capabilities.

At the fourth chokepoint, once a hazardous state occurs it
may still be possible to recognize that a hazardous condition
exists, and prevent an accident by implementing accident avoid-
ance capabilities. Techniques for survivability, including system
resilience and the concept of degraded modes of operation,
such as in [9] and [10] are likely to be applicable at this choke-
point as well.

At the fifth chokepoint, even after a loss-event occurs, there
are mitigation techniques that can be applied. For example in
an automobile, if an accident occurs, air bags and guard rails
are mitigation techniques to minimize the resultant damage. Ex-
amples of generic techniques are more difficult to define at this
chokepoint; they seem to be more system dependent, although
analysis techniques such as Failure Modes and Effects Analysis
are applicable.

The damage mitigation techniques for software-intensive
systems naturally have been focused more at the beginning of
the damage process with less emphasis towards the end. Much
is known and published about fault avoidance and fault toler-
ance. Less is known about failure management. Little has been
written about the recognition and management of hazardous
conditions in software-intensive systems. Loss-event avoidance
appears to be relatively unexplored, with the exception of Sha’s
work on a Simplex Architecture [11], [12] on safety-critical sys-
tems, and the previously mentioned work on defining survivable
core capabilities [10] and [9].

Conclusion and Future Work
The objective of this article is to provide a conceptual frame-

work for damage mitigation and trusted systems to enable the
research, design, and operation of mission-critical systems.
While it has been used successfully in a graduate level software
engineering course, this work is still in an embryonic stage.
Future work includes:

•	Conducting case studies of actual mission-critical systems
to determine the utility of the proposed framework, the classifica-
tion of existing damage mitigation techniques and architectures,
and exploring novel techniques which the framework suggests.

•	Analyzing techniques that may be used to recognize
hazardous conditions during runtime as a means to deploy
damage mitigation.

•	Investigating the use of control system theory as a means
to monitor and control the damage mitigation process.

•	Researching the relationships between the attributes of
safety, security, dependability, and survivability.

http://www.usajobs.gov
http://www.acq.osd.mil/se
http://www.usajobs.gov
http://www.dhs.gov

16 CrossTalk—March/April 2011

RUGGED SOFTWARE

1.	 “DSN 2010.” Dependable Systems Conference 28 July 2010. < http://www.dsn.org/>
2.	 “HICSS.” Hawaii International Conference of System Science 4 Jan. 2011.
	 <http://www.hicss.hawaii.edu/>
3.	 Bogdanich, Walt. “Radiation Offers New Cures, and Ways to Do Harm.” The New York Times
	 24 Jan. 2010. <http://www.nytimes.com/2010/01/24/health/24radiation.html>
4.	 Wilson, Clay. Botnets, Cybercrime, and Cyberterrorism: Vulnerabilities and Policy Issues for
	 Congress. 17 Nov. 2007. <http://www.fas.org/sgp/crs/terror/RL32114.pdf>
5.	 Avizienis, A. et al. “Basic Concepts and Taxonomy of Dependable and Secure Computing.”
	 IEEE Transactions on Dependable and Secure Computing 1.1, (Jan-Mar 2004): 11-33
6.	 Herrmann, Debra S. Software Safety and Reliability: Techniques, Approaches, and Standards
	 of Key Industrial Sectors. Los Alamitos, California: IEEE Computer Society, 1999: 14-15
7.	 Bayuk, Jennifer. “The Utility of Security Standards.” Washington, D. C., 2010.
8.	 Federal Standard 1037C. “Federal Standard Telecommunications: Glossary of Telecommuni
	 cations Terms.” 1996. <http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm>
9.	 Knight, John C, and Kevin J Sullivan. “On the Definition of Survivability.” University of
	 Virginia, Department of Computer Science Technical Report CS-TR-33-00, 2000.
	 <http://www.cs.virginia.edu/~jck/publications/tech.report.2000.33.pdf>
10. Linger, Richard, Nancy Mead, and Howard Lipson. “Requirements Definition for Surviv	
	 able Network Systems.” Proceedings of the 3rd International Conference on Requirements
	 Engineering: Putting Requirements Engineering to Practice, 1998. <http://citeseerx.ist.psu.
	 edu/viewdoc/download?doi=10.1.1.46.6083&rep=rep1&type=pdf>
11. Sha, Lui. “Using Simplicity to Control Complexity.” IEEE SOFTWARE (July/Aug 2001): 20-28 	
	 <https://agora.cs.illinois.edu/download/attachments/10581/ IEEESoftware.
	 pdf?version=1>
12. Holzmann, G. “Software Safety and Rocket Science.” ECRIM News, Special Safety-Critical 	
	 Software, 75 2008. <http://ercim-news.ercim.eu/software-safety-and-rocket-science>

REFERENCES
Linda Laird is the Director of the Software
Engineering Program at Stevens Institute of
Technology. Professor Laird is the author of
Software Estimation and Measurement: A
Practical Approach. Her research interests
include system dependability, architecture
and design for software reliability, and
software estimation. She is a graduate of
Carnegie-Mellon University and the Univer-
sity of Michigan. Professor Laird managed
large software development projects at Bell
Laboratories for over 25 years.

Jon Wade, Ph.D. is the Associate Dean
of Research at the School of Systems and
Enterprises at the Stevens Institute of Tech-
nology. Dr. Wade’s research interests include
the transformation of systems engineering,
Enterprise Systems and Systems of Sys-
tems, and the use of technology in technical
workforce development. He has over 20
years of experience in the research and
development of Enterprise systems at IGT,
Sun Microsystems and Thinking Machines
Corporation. Dr. Wade is a graduate of the
Massachusetts Institute of Technology.

Linda M. Laird, Jon P. Wade
Stevens Institute of Technology
School of Systems and Enterprises
Castle Point on Hudson
Hoboken, NJ 07030

ABOUT THE AUTHORS

The Software Maintenance Group at Hill Air Force Base is recruiting civilian positions
(U.S. Citizenship Required). Benefits include paid vacation, health care plans, matching retirement fund,

tuition assistance and time off for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

Send resumes to:
phil.coumans@hill.af.mil

or call (801) 586-5325
Visit us at:

http://www.309SMXG.hill.af.mil

http://www.dsn.org/
http://www.hicss.hawaii.edu/
http://www.nytimes.com/2010/01/24/health/24radiation.html
http://www.fas.org/sgp/crs/terror/RL32114.pdf
http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm
http://www.cs.virginia.edu/~jck/publications/tech.report.2000.33.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.6083&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.6083&rep=rep1&type=pdf
https://agora.cs.illinois.edu/download/attachments/10581/IEEESoftware.pdf?version=1
https://agora.cs.illinois.edu/download/attachments/10581/IEEESoftware.pdf?version=1
http://ercim-news.ercim.eu/software-safety-and-rocket-science
mailto:phil.coumans@hill.af.milor
mailto:phil.coumans@hill.af.milor
http://www.309SMGX.hill.af.mil

CrossTalk—March/April 2011 17

RUGGED SOFTWARE

C. Warren Axelrod, Ph.D., Delta Risk

Abstract. Despite extensive testing of application functionality and secu-
rity, we see many instances of software, when attacked or during normal
operation, performing adversely in ways that were not anticipated. In large
part, this is due to software assurance staff not testing fully for “negative
functionality,” that is, ensuring that applications do not do what they are
not supposed to. There are many reasons for this, including the relative
enormity of the task, the pressure to implement quickly, and the lack of
qualified testers. In this article, we will examine these issues and suggest
ways in which we can achieve some measure of assurance that applica-
tions will not behave inappropriately under a broad range of conditions.

The Need for
Functional
Security Testing

Introduction
Traditionally, software testing has focused on making sure

systems satisfy requirements. Such functional requirements
and specifications are expected to, but may not necessarily, ac-
curately depict the functionality actually wanted by prospective
users, particularly those aspects users may not be aware of or
may not have been asked to consider.

In this article we examine the issues and challenges related to
ensuring applications do not do what applications are not sup-
posed to do. Such testing, for which we use the term Functional
Security Testing (FST), is often complex, extensive and open-
ended. And yet it is key to the secure and resilient operation
of applications for the applications not to misbehave when
subjected to various adverse stimuli or attacks.

The Evolution Of Testing
Programmers test applications that they are developing to

ensure the applications run through to completion without gen-
erating errors. Programmers then usually engage in some rudi-
mentary tests for correctness, such as ensuring that calculations
correctly handle the types of data the programs process. In gen-
eral, programmers seldom think “out of the box.” This attribute
was, to a large extent, the root cause of the Y2K “bug,” where
programmers frequently did not anticipate their programs would
be running after Dec. 31, 1999 and so did not include century
indicators in the programs, opting for two-digit year depictions.
While it is true that programmers were motivated to abbreviate
the year field by the need to stay within strict limitations in the
amount of data that could be stored and transmitted, they failed
to look to the future when their programs would crash.

During this early period, programs were thrown “over the
transom” to the Quality Assurance or Software Assurance
departments, where test engineers would attempt to match the
functioning of the programs against the functional specifica-
tions developed by systems analysts. In general, such testers
would limit their scope to ensuring the programs did what was
intended, and not consider anomalous program behavior.1

Over the past decade, there has been greater focus on
what might be called technical security testing, where security
includes confidentiality, integrity, and availability. The usual ap-
proach is to assess the adherence of systems (including appli-
cations, system software and hardware, networks, etc.) to secure
architecture, design, coding (i.e., programming), and operational
standards. Often such testing includes checking for common
vulnerabilities and programming errors, such as those specified
by the Open Web Application Security Project (OWASP)2 and
SysAdmin, Audit, Network, Security (SANS) 3 respectively.

However, there are aspects of security testing that are dif-
ferent. For example, McGraw [1] refers to “anti-requirements,”
which “provide insight into how a malicious user, attacker …
can abuse [a] system.” McGraw differentiates anti-requirements
from “security requirements” in that the security requirements
“result in functionality that is built into a system to establish
accepted behavior, [whereas] anti-requirements are established
to determine what happens when this functionality goes away.”
McGraw goes on to say “anti-requirements are often tied up in
the lack of or failure of a security function.” Note that McGraw is
referring to the adequacy or resiliency of security functions and
not functions within applications.

Merkow and Lakshmikanth [2] refer to security-related and
resiliency-related testing as “nonfunctional requirements (NFR)
testing.” NFR testing, which is used to determine the quality, se-
curity, and resiliency aspects of software, is based on the belief
that nonfunctional requirements represent not what software is
meant to do but how the software might do it. Merkow and Lak-
shmikanth [2] also stated that “gaining confidence that a system
does not do what it’s not supposed to do …” requires subjecting
“… a system to brutal resilience testing.”

In his book [3], Anderson affirms the importance of resilience
testing with his comment that: “Failure recovery is often the
most important aspect of security engineering, yet it is one of
the most neglected.” He goes on to note that “… secure distrib-
uted systems tend to have been discussed as a side issue by
experts on communications protocols and operating systems …”

The author believes FST is another key area of testing that
has received little attention from application development and
information security communities and is not specifically men-
tioned in [1] or [2] or other publications.4 Using FST, applica-
tions are tested to ensure they do not allow harmful functional
responses, which might have been initiated by legitimate or
fraudulent users, to take place. It should be noted here that test-
ing for responses that do not derive specifically from functions
within applications, such as when a computer process corrupts
data, are not included in the author’s definition of FST (see
Introduction section).

It is important to differentiate among functional testing5 of
applications, which attempts to ensure that the functionality

18 CrossTalk—March/April 2011

RUGGED SOFTWARE

of applications matches requirements; security testing, which
aims to eliminate the aspects of systems that do not relate to
application functionality but to the confidentiality, integrity, and
availability of applications and the applications’ infrastructure;
and FST, which is designed to ferret out the malfunctioning of
applications that might lead to security compromises.

In this article, we examine FST and how it relates to other
forms of testing, look at why it might have received so little at-
tention to date, and suggest what is needed to make it a more
effective software assurance tool.

Categories Of Testing
Various types of testing are key for successful software develop-

ment and operation, as discussed in [1], [2], and [3]. As described
previously, software testers (or test engineers) most commonly
check that computer programs operate in accordance with the
design of an application and consequent functional specifications,
which in turn are meant to reflect users’ functional requirements.
This form of testing is termed “functional requirements testing.”
When applications are tested for functionality in isolation, rather
than in an operational context, the activity is called “unit testing.”
However, testers do need to ensure applications work correctly with
the other applications with which they must interact. This latter form
of functional requirements testing is known as “integration testing.”
And testers must further check that individual programs function
appropriately in the various particular contexts to which they might
be subjected. This further form of functional requirements testing is
known as “regression testing,” which is done to assure that changes
in the functionality of an application do not have a negative impact
on other components, subsystems and systems.

There is increasing interest from information security and risk
management professionals in the security strength of software, as
shown by the growth of such organizations as OWASP at <http://
www.owasp.org>, which has seen very rapid growth in membership
since its founding in 2001, and the Build Security In collaborative
effort sponsored by the National Cyber Security Division of the
U.S. Department of Homeland Security, at <https://buildsecurityin.
us-cert.gov/bsi/home.html>. Such interest was largely precipitated
by the discovery of a growing number of highly effective attacks
against the application layer. Some estimate that such attacks ac-
count for as much as 70% of attacks.6 As a result, we are seeing
considerable growth in security testing of applications, as indicated
by the increasing activity of organizations such as OWASP, men-
tioned above, as well as a strong movement for building security
into applications from the beginning.7 Security testing is essentially
geared to reviewing software designs and coding practices, and the
software code itself, to ensure the most egregious vulnerabilities
have not been introduced into the concept, design, architecture,
specifications, requirements, building, or release phases. When
such exposures are discovered, they must be quickly eliminated.
Security testing is essentially negative testing in that testers try to
determine that certain attacks will not be successful. If the attacks
are deemed to be a threat to a specific piece of software, then
testers recommend they be eliminated.

While functional testing is commonplace, and security testing
is increasingly popular, there is a third form of testing, which

we term FST, which is not generally applied. This circumstance
might be ignored were it not for the fact that this latter form of
testing can be one of the most important aspects of software
assurance. This is because it is this form of testing that provides
some level of assurance that applications will not allow activi-
ties that should not be permitted. The desired assurance level
depends on the cost and time (or any resulting delays) of the
FST exercise and the benefits derived in terms of avoidance of
malfunctions and resistance to attacks.

Some Examples Of FST
Perhaps the most ubiquitous example of the need for FST oc-

curred during the Y2K remediation period. As the reader will recall,
many computer programs, particularly within legacy systems, used
two digit year data fields and did not recognize the date change to
the 21st century. This might be considered a security issue as the
integrity and availability of applications were at risk due to the Y2K
problem, and the confidentiality of information was threatened in
some situations. As a result, estimated expenditures of more than
$300 billion were incurred to modify programs so they would cor-
rectly handle the millennium date rollover.8 Despite these efforts, a
large number of programs retained this defect and failed to process
dates correctly, although catastrophic failure was avoided for the
year 2000. For the most part, testing for the Y2K “bug” was a form
of FST in that assessment of programs was on the basis of failure,
not positive functionality, as previously mentioned.

More recently, there was a report of the interception of video
transmissions from drones on surveillance missions in Iraq and
Afghanistan where enemies could easily view video feeds using
a $26 piece of commercially available software [9]. This is an-
other example of systems that permit misuse because they were
not tested against specific eventualities.

Increased Security Testing
About a dozen years ago, as the chief information security

officer of a financial services firm, the author was asked to
develop a series of scripts for testing the security of a strategic
new client-server system. The testers had already created some
600 functional test scripts. The author came up with some
10,000 scripts for testing the “security” of the system. The num-
ber was large because there were so many possible combina-
tions and permutations of ways to access functions and data. In
the author’s opinion, this ratio of testing scripts is typical.

During the intervening years, there has been increased interest
in and growth of technical security testing, in the author’s opinion,
as a means of assuring the security of applications and systems.
Such testing is critical to the secure operation of applications
and does much to reduce vulnerabilities to attacks through the
application layer. The range of such testing is very well described
in several books, especially in [1]. However, this type of testing is
performed by security testers who are familiar with the secu-
rity weaknesses of programming languages and ways in which
designers and programmers introduce vulnerabilities. These prac-
titioners seldom get into the functionality of the applications and
what security (i.e., confidentiality, integrity, and availability) expo-
sures there might be in the functional operation of the software.

http://www.owasp.org
http://www.owasp.org
https://buildsecurityin.us-cert.gov/bsi/home.html
https://buildsecurityin.us-cert.gov/bsi/home.html

CrossTalk—March/April 2011 19

RUGGED SOFTWARE

Skills Required Of Test Staff
The evolution of testing, from functional testing to security test-

ing to FST, clearly relates to particular threats and the skill pools
available at the time. In the early days of software development, the
primary goal was to ensure the program worked and performed
according to the requirements, with any residual errors showing up
and being fixed during operations. Early mainframe and minicom-
puter systems were usually accessed and used by insiders or
outsiders under the supervision of insiders. Programmers tested for
the failure-free running of the software, whereas the testing staff
ascertained that the functionality of the software was correct. Func-
tional errors were turned back to the developers for correction and
the software was retested until it operated correctly. In the author’s
experience, better-qualified test staffs were often familiar with the
business use of the applications and had some rudimentary under-
standing of programming and computer operations.

With the arrival and proliferation of the Internet, applications were
increasingly accessed and used by outside parties. This made for
the need to test for a greater degree of security since organiza-
tions operating the systems often do not have much control over
the actions of end users. The same deterrents that can be used
against internal miscreants for their misuse of a system generally
are not particularly effective against customers, business partners,
or the public at large, since the latter are not subject to the same

consequences, such as termination of employment.9 Consequently,
it has fallen to software vendors and internal staff to attempt to
make sure that the systems cannot be compromised by evildoers
both inside and external to the organization operating the software.

Table 1 shows the levels of knowledge, skill, and experience
needed for each type of testing as well as how such attributes
vary with the type of testing being conducted.

FST Issues
One of the issues relating to FST is that it does not yet have

a generally accepted, immediately recognizable name. The type
of testing referenced here lies somewhere between traditional
functional testing and security testing, as we currently know
these test categories. As described above, the former is used to
establish that applications operate according to the functionality
requirements expressed in the design of the system, that is, they
do what they are supposed to do. The latter is a combination of
tests relating to the security quality of the design, architecture,
and coding aspects of an application, as well as other character-
istics pertaining to the platform on which an application runs and
the infrastructure that supports the system.

Other factors, such as the context in which the system will oper-
ate (e.g., Web facing, open, and internal), have a major impact on
the level of testing that should be performed in each category. Criti-

Knowledge Skills
and Experience
Requirements for

Functional
Requirements
Testing*

Nonfunctional
Requirements
(Security)
Testing**

Anti-
Requirements
Testing*** FST****

General business Moderate Low Low Moderate

Business processing Moderate – High Moderate – Low Low High

Coding standards Moderate –
Functional coding
standards

High – Security
coding standards

High – Security
coding standards

High – Functional and
security coding
standards

Testing Methods High – Functional
testing

High – Security
testing

High – Security
testing

High – Functional and
security testing

Computer operations Moderate High High High

Security – Privacy
and Confidentiality

Moderate - High High High High

Security – Integrity Low to Moderate High High High

Security – Availability Low High High High

* Per McGraw [1], Merkow and Lakshmikanth [2] and Anderson [3]
** Per Merkow and Lakshmikanth [2]
*** Per McGraw [1]
**** Per this article

Table 1: Required Knowledge, Skills, and Experience for Different Testing Approaches

20 CrossTalk—March/April 2011

RUGGED SOFTWARE

cal Web-facing commercial applications and embedded systems
operating aircraft or weaponry must undergo extensive testing.

Between these two traditional test modes, are more recent
approaches. One is called “anti-requirements testing” or “nega-
tive requirements testing”10 of applications. This is directed at
the security aspects of systems and its purpose is to prevent
security-related components from behaving badly.

The fourth category is FST, which is essentially testing to
ensure the application does not allow application functionality and
data use that is forbidden, either implicitly or explicitly, which might
compromise security. An example of such a test objective would
be … “Do not allow one customer to see another customer’s
data.” To test this fully, every possible combination of user access
to functions and data, both authorized and unauthorized, must be
tested, which is impossible in practice. Therefore, some compro-
mises must be made as to how much of this testing can reason-
ably be done, subject to project time and funding constraints.

Why So Little Attention To FST?
The author believes that there are a number of reasons why

there is insufficient emphasis on FST, namely:
• FST can be orders of magnitude greater in effort and cost

than traditional application functional testing and security testing.
• To perform FST properly, testers must be knowledgeable

and experienced in business functions and application security,
as well as software assurance processes.11

• The importance of testing for negative functionality is, in the
view of the author, not generally recognized by general business
management, risk managers, IT management, and application
development managers.

What Needs To Be Done?
Support from Owners and Participants:

The most important step is to gain support for FST and get various
participants and owners to understand that there is a very significant
gap in standard software testing. This gap shows up when, for exam-
ple, insiders are able to access information to which they should not
have access, and then use the information for nefarious purposes.

FST Scope and Procedure:
The scope, procedure, time frame, and cost for a particular FST

exercise have to be determined in advance. In many cases, the
cost of running through all possible FST scripts is prohibitive and
cannot be justified economically. Therefore it is necessary to cre-
ate an iterative, adaptive procedure. One such approach is to test
random samples from the entirety of test scripts and determine,
using statistical methods applied to the design of experiments,
from the results of the sample tests whether it is worthwhile to
test further samples. In the author’s experience, this approach
results in running a relatively small subset of the complete list of
test scripts, which usually reduces the cost and duration of testing
considerably, while improving the accuracy of the results.

The author recommends an FST methodology which consists
of the following steps:

1. Review test scripts that have been created for functional
requirements testing.

2. Create as complete a set as possible of potential user ac-

tivities (use cases) and remove those activities that are included
in the functional requirements test scripts.

3. Develop test scripts for the remaining activities.
4. If the number and size of test scripts of the remaining

activities are too many and too large, respectively, to justify the
expense and time for such testing as determined by a return
on investment (ROI) analysis, adopt a method for testing a suc-
cession of random samples of the scripts (where the size of the
sample is based on ROI) and run the selected scripts.

5. If the error rates are significant then the sample size should
be expanded based on the risk suggested by the prior tests.

6. The application and system errors, which are detected in
the FST process, are fed back to the development team for cor-
rection and the corrected code is then retested until all material
errors are fixed.

ROI:
Regarding ROI, the cost of and time required for performing

tests can generally be estimated with a reasonable degree of ac-
curacy. However, with FST and NFR (security) testing, the depen-
dency of future sample sizes on the results of prior tests makes
for dynamic costs and durations. In addition, the benefits of FST
and NFR testing are particularly difficult to determine since, when
sampling is involved, it is not clear what errors might remain.

In practical terms, FST should continue until the development
and testing teams are reasonably satisfied that the applications
no longer harbor any major latent deficiencies, subject to main-
taining a positive ROI from the FST process itself.

Body of Knowledge:
Finally, we need to develop a body of knowledge about FST

from experience with successful tests and actual software
failures. As the library of such tests expands, it is important
to share test results with others who can then apply lessons
learned to their own FST programs. In this way, testers can more
readily determine which types of tests are likely to be more fruit-
ful and these testers, in their turn, can contribute new FST facts
and experiences to those already cataloged.

Summary and Conclusions
The testing of applications to try to ensure that they do not

misbehave is complex, sophisticated, and expensive. Yet the cost
of not doing such tests, in terms of security incidents, can be so
much greater than going through a realistic FST exercise.

There may well be some centers where this type of testing
is already being performed, but is not called FST. However, the
author believes it is safe to say that FST is not ubiquitous, as
can be seen from the flood of incident information that often ap-
pears in the news.12

It is also apparent from the lack of published material in this
area that developers and security professionals are not gener-
ally familiar with the principles of FST and therefore do not
practice them to the detriment of system confidentiality, integrity,
and availability. The situation will only improve when it is gener-
ally accepted that we need to ensure applications are prevented
from functionally allowing damaging events. This is in addition to
the non-functional security testing that is more commonplace.

CrossTalk—March/April 2011 21

RUGGED SOFTWARE

1.	 McGraw, Gary, Software Security: Building Security In, Upper Saddle River, NJ: Addison-Wesley, 2006, pages 213-216.
2.	 Merkow, Mark and R. Lakshmikanth, Secure and Resilient Software Development, Auerbach Publications, forthcoming
	 September 2010.
3.	 Anderson, Ross, Security Engineering, Second Edition, Indianapolis, IN: Wiley Publishing, 2008, pages 192 and 212.
4.	 Hass, Anne Mette Jonassen, Guide to Advanced Software Testing, Boston, MA: Artech House, 2008.
5.	 Michael, C.C. and Will Radosevich, “Risk-Based and Functional Security Testing,” Cigital, Inc., 2005, at
	 <https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/testing/255-BSI.html>
6.	 Gegick, Michael, “Intro to Security Testing,” NC State University, 2006 at
	 <http://resist.isti.cnr.it/free_slides/security/williams/Security1.pdf>
7.	 “Application-layer security: What it takes to enable the next generation of security services,” Nortel White Paper at
	 <http://www.nortel.com/products/01/alteon/2224/collateral/nn105560-010605.pdf>
8.	 “Application-layer Attack Protection: Proactive defenses for your critical business applications,” MacAfee Web Page at 	
	 <http://www.macafee.com/us/enterprise/solutions/network_protection/application_layer_attack_protections.html>
9.	 Shane, Scott and Christopher Drew, “Officials Say Iraq Fighters Intercepted Drone Video,” The New York Times,
	 December 17, 2009 at <http://www.nytimes.com/2009/12/18/world/middleeast/18drones.html>

1.	 I recall an exceptionally talented QA manager, who reported to me in the 1980s and who would spend a day or
	 so after the functionality of the system had been assured just hitting keys at random to see how the system would
	 respond. He invariably found program errors that had not shown up in the original functional testing. Today this
	 might be called “fuzz testing.”
2.	 See OWASP Top 10 – 2010 (Release Candidate 1) at <http://www.owasp.org/images/0/0f/OWASP_T10_-_2010_rc1.pdf>
3.	 See CWE/SANS Top 25 Most Dangerous Programming Errors at <http://www.sans.org/top25-programming-errors/>
4.	 There are occasional references to functional security testing such as in Hass’s Guide to Advanced Software 		
	 Testing [4], page 248, Michael and Radosevich’s article “Risk-Based and Functional Security Testing” [5], and a
	 presentation by Michael Gegick [6]. In some cases, there is confusion between functional security testing and
	 what the author would term “security functionality testing,” which is done to ensure that the security functionality,
	 rather than the application functionality, is correct. Even when functional security testing is defined the same way
	 as it is in this article, as in [4], little detail is provided as to the scope of the testing effort and the use of sampling
	 to make the testing manageable.
5.	 In the commercial world, “functional testing” is sometimes referred to as “business logic testing.”
6.	 The percentage of attacks affecting the application layer (as opposed to networks) is variously estimated in the
	 70 to 80 percent range, as in the Nortel White Paper [7] and the MacAfee Website [8]. The accuracy of these
	 numbers is highly questionable since, in the author’s opinion, the vast majority of compromises of applications
	 are never detected, especially those promulgated by insiders, such as employees, contractors, and service
	 providers’ staff. However other forms of attack are also underestimated. Perhaps the best one can say is that
	 security professionals believe that a large percentage, possibly the majority, of compromises are those related
	 to applications.
7.	 Descriptions of the various BSI (Build Security In) approaches can be found at <https://buildsecurityin.
	 us-cert.gov/bsi/home.html>, <http://www.bsi-mm.com>, <http://www.opensamm.org>
8.	 See “Y2K: Overhyped and oversold?” BBC News, January 6, 2000, at <http://news.bbc.co.uk/2/hi/
	 talking_point/586938.stm>
9.	 In a comment on the author’s Bloginfosec column “Insider Threat – Not Knowing That You Don’t Know
	 What You Don’t Know,” available at <http://www.bloginfosec.com/2010/05/10/insider-threat-
	 %e2%80%93-not-knowing-that-you-don%e2%80%99t-know-what-you-don%e2%80%99t-know/2/>,
	 Gary Hinson raises the issue of “plausible deniability.” He contends that the “wayward insider” is better
	 able to claim that the unauthorized activity was an accident. This reduces the deterrent value of disciplin
	 ary consequences against the employee or other insider.
10.	Dr. Herbert (Hugh) Thompson, Chief Security Strategist at People Security, coined this term.
11.	 Such skills can be demonstrated by testers having appropriate certifications.
12.	The author recently spoke with an experienced software engineer, who is involved in the design and development of safety-
	 critical systems. He described the way in which he tests such systems. His approach was very similar to that defined as FST
	 in this article. However, he had not formalized such testing as markedly different from regular functional testing, and he was
	 not aware that this approach was not widely used. This suggests that there are pockets of testers performing FST, but such
	 centers of excellence are not common as demonstrated by the frequency of software failures.

C. Warren Axelrod, Ph.D., is a senior
consultant with Delta Risk, a consultancy
specializing in cyber defense, resiliency
and risk management. Previously, he was
the chief privacy officer and business
information security officer for US Trust,
the private wealth management division of
Bank of America. He was a co-founder of
the Financial Services Information Sharing
and Analysis Center. Dr. Axelrod won the
2009 Michael Cangemi Best Book/Best
Article Award for his article “Accounting for
Value and Uncertainty in Security Metrics,”
published in the Information Systems Audit
and Control Association (ISACA) Journal,
Volume 6, 2008. He was honored with the
prestigious Information Security Executive
Luminary Leadership Award in 2007. He
received a Computerworld Premier 100 IT
Leaders Award in 2003.

Dr. Axelrod has written three books, two
on computer management, and numerous
articles on information technology and
information security topics. His third book
is Outsourcing Information Security, pub-
lished in 2004 by Artech House. His article
“Investing in Software Resiliency” appeared
in the September/October 2009 issue of
CrossTalk magazine.

He holds a Ph.D. in managerial econom-
ics from Cornell University, as well as an
honors M.A. in economics and statistics
and a first-class honors B.Sc. in electri-
cal engineering, both from the University
of Glasgow. He is certified as a Certified
Information Systems Security Professional
and Certified Information Security Manager.

C. Warren Axelrod, Ph.D.
Delta Risk
P.O. Box 234030
Great Neck, NY 11023
E-mail: waxelrod@delta-risk.net

ABOUT THE AUTHOR REFERENCES

NOTES

https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/testing/255-BSI.html
http://resist.isti.cnr.it/free_slides/security/williams/Security1.pdf
http://www.nortel.com/products/01/alteon/2224/collateral/nn105560-010605.pdf
http://www.macafee.com/us/enterprise/solutions/network_protection/application_layer_attack_protections.html
http://www.nytimes.com/2009/12/18/world/middleeast/18drones.html
http://www.owasp.org/images/0/0f/OWASP_T10_-_2010_rc1.pdf
http://www.sans.org/top25-programming-errors/
https://buildsecurityin.us-cert.gov/bsi/home.html
https://buildsecurityin.us-cert.gov/bsi/home.html
http://www.bsi-mm.com
http://www.opensamm.org
http://news.bbc.co.uk/2/hi/talking_point/586938.stm
http://news.bbc.co.uk/2/hi/talking_point/586938.stm
http://www.bloginfosec.com/2010/05/10/insider-threat-%e2%80%93-not-knowing-that-you-don%e2%80%99t-know-what-you-don%e2%80%99t-know/2/
http://www.bloginfosec.com/2010/05/10/insider-threat-%e2%80%93-not-knowing-that-you-don%e2%80%99t-know-what-you-don%e2%80%99t-know/2/
mailto:waxelrod@delta-risk.net

22 CrossTalk—March/April 2011

RUGGED SOFTWARE

Introduction
The activation of faults can cause degradations in system

services–sometimes tolerable, sometimes intolerable. As long as
resulting deviations in system services remain within specified
requirements, services can be maintained, although in degraded
mode. If deviations exceed acceptable limits, errors occur. As
long as erroneous states do not damage component services,
error resolution may be possible; at the same time, unaffected
states can render service. If errors propagate to component
services, component failure occurs; we say that the errors have
been activated. Failed components that provide nonessential
services can be abandoned. Alternatively, they can be replaced
or their corrupted states corrected, assuming sufficient time
and resources are available. If component failure prevents the
rendering of an essential service, system failure must ensue.
Uncontrolled system failure results in faulty products delivered
to clients, potentially repeating the cycle of anomalies. We follow
the propagation of faults to errors and failures and then to faults
again, with service degradation considered as a control mecha-
nism at each stage of the anomaly cycle. Our study applies to
both hardware and software systems.

The Anomaly Cycle
A service is a set of outputs and/or inputs together with a

set of restrictions (timings, dependencies, and priorities) [3] that
satisfy system requirements. Services are rendered to clients for
further manipulation and/or for consumption. Precise service
requirements may be specified, perhaps for voltage levels, de-
livery deadlines, or ordering of data, but deviations from optimal
specifications frequently are accepted. Delays, truncated ser-
vices, and fuzzy outputs are all examples of tolerated deviations
in some system requirements. We define “service degradations”
to be services that are rendered within acceptable deviations
from optimal service requirements by system states containing
attributes that differ from system specifications for particular
conditions under which the service is rendered.

“ISO 3.5.2 Error: A manifestation of a fault
	 [see 3.5.3] in an object …

3.5.3 Fault: A situation that may cause errors to
	 appear in an object.

A fault is either active or dormant. A fault is active
	 when it produces errors.” [1]

“The adjudged or hypothesized cause of an error is
	 called a fault ... A fault is active when it causes
	 an error, otherwise it is dormant.” [2]

A fault is a set of attributes that are assigned to system
states together with conditional dependency restrictions, yet
do not conform to system specifications. A fault is activated
when the condition(s) of such a dependency evaluates to true,
rendering states unable to provide specified services. If system
requirements tolerate deviations from precise specifications, the
result can be a degradation of service. For example, consider an
unsecured wireless home network. If an unauthorized neigh-
bor eavesdrops, obtains the homeowner’s credit card number,
and uses it to subsidize a trip to Hawaii, errors have occurred.
Suppose, however, that the neighbor’s connection only slightly
delays the homeowner’s service. As long as delays remain
within tolerable limits, so that the homeowner continues being
serviced, the neighbor has caused a degradation of service.
We thus modify the definitions of fault activation that are
cited previously: A fault is active when it produces errors or
service degradations.

Service degradations are common at multiple stages of a sys-
tem’s lifecycle, not only as direct results of fault activation, but also
as by-products of error resolution and component replacement or
abandonment. For example, delay degradations occur during error
resolution, diversity selection, and fault masking; partial service
degradation occurs when nonessential failed components are
abandoned; and dependency degradations occur following inferior
voting selections of design or data diversity. Service degradations,
however, are the only mechanisms applicable for error preven-
tion immediately after a fault has been activated and are relatively
efficient because of their ability to be utilized early in the anomaly
cycle. Systems monitor deviation patterns to detect suspected
degradations, enabling appropriate actions to be taken before

Fault
Tolerance
With Service
Degradations
Abstract. The disruptions and/or corruptions that occur during a sys-
tem’s lifecycle require efficient management in order to enable service
continuation. We investigate service degradations, which are effective
mechanisms for fault tolerance at multiple stages of the anomaly cycle.
The acceptance and control of degradations are of particular importance
for the prevention of errors.

Dr. Gertrude Levine, Fairleigh Dickinson University

CrossTalk—March/April 2011 23

RUGGED SOFTWARE

errors occur. Since degradations frequently feed upon themselves,
systems must ensure that deviations are limited. For example, chan-
nel utilization and packet loss frequency are monitored to forestall
errors resulting from network congestion; traffic is monitored in
multimedia systems, with the throttling of users, as necessary, to
maintain quality of service requirements and prevent errors.

Corrupted (erroneous or failed) service is not service, but dis-
service. Similarly, intolerable degradations are not degradations,
but errors.

“3.5.2 Error: Part of an object state which is liable 	
	 to lead to failure.”[1]

“The definition of an error is the part of the total
	 state of the system that may lead to its subse
	 quent service failure. ” [2]

An error is a deviation in a service state (caused by fault
activation) that renders the state incapable of producing (un-
corrupted) service. Service corruption may involve intolerable
output values, unauthorized inputs, or unacceptable waits, for
example. As long as errors do not corrupt essential services,
unaffected states can continue to render service. Some errone-
ous states are never accessed, i.e., they are implicitly or explicitly
abandoned. Others are detected during state changes or state
monitoring and resolved before they cause failure. Error resolu-
tion is possible only if resulting degradations, such as delays, are
tolerable. Errors that are not resolved propagate to those system
states that accept their corrupted service. Errors are activated
when they cause component failure.

A corrupted state regresses, losing qualities that made it ser-
viceable at that state. (Hardware is frequently serviceable in pre-
vious states, such as a demolished building’s steel that is reused
as scrap or gold jewelry that is melted and reshaped.) The loss
of serviceability is critical to the definition of an error, else how
do we distinguish between a dormant fault and a dormant error?
Both can cause errors and both can lead to “subsequent service
failure.” Yet, a faulty state can continue to render service; an er-
roneous state cannot. Consider a system that receives concrete
that does not satisfy specifications. The faults in the concrete
are not detected during (faulty) acceptance testing. A two-deck
bridge is built using the concrete. Under light traffic, the con-
crete provides optimal service. As the traffic load increases, the
concrete bulges, continuing to support traffic but in degraded
mode. When stress is applied to the upper deck, the concrete
cracks and even light traffic can no longer be sustained. An
error has occurred. The lower deck, however, is still serviceable.
Then traffic appears on the upper deck. The crack spreads and
the entire bridge and its traffic load collapse–a system failure.
The upper deck could no longer render service unless the crack
was repaired or returned, at the least, to its service state prior to
stress application. The provider of the concrete was at fault (and
may have incorporated faulty materials that it had accepted).
But it was also the responsibility of the clients to properly test
the concrete before acceptance. In addition, maintenance crews

should have performed necessary repairs, alerted by degrada-
tions that became evident during the use of the bridge. We
recognize multiple faults, errors, and component failures leading
to the failure of the bridge.

	“Failure: The inability of a system or component to
	 perform its required functions within specified
	 performance requirements.” [4]

A corrupted state loses its serviceability, but that may not
be evident to clients. The acceptance of corrupted service by
system states propagates errors; its acceptance by system com-
ponents causes failure. Components are sets of states that are
bound together with dependencies [2] so that they fail and must
be abandoned or replaced as a unit. A failed component can
be discarded if its service is nonessential. For example, a failed
parity disk in RAID 2 systems can be disconnected without loss
of input or output service. Alternatively, component failures can
be handled by backup and recovery procedures or by compo-
nent replacement, causing delay degradation. If a component
fails, and the service that it provides is essential, and it is neither
replaced nor its erroneous states corrected, then the system
must fail, i.e., it will deliver corrupted (including missing) service.
We say that a system failure is activated when a client accepts
its faulty service.

A hazard is an “extraordinary condition” [5] that threatens to
destroy all components of a software and/or hardware system.
Even systems that have extraordinary defensive mechanisms
are vulnerable to some hazards, such as tornados, meteorite
landings, or a Linux installation by an inept user. We would not
categorize systems as faulty, however, for such vulnerabilities.
It is generally impossible or impractical to forestall the execu-
tion of each conditional dependency that can render a system
inoperable. We claim that hazards cause system failure upon
activation, bypassing the states of faults, errors, and component
failures. Failure recovery following hazard activation relies on
redundancies, where feasible.

Multiple faults are required for some types of errors (e.g., the
errors of security violations [2]); multiple errors are required for
some types of component failures (e.g., parity failures following
an even number of bit errors); and multiple component failures
are required for some types of system failures (e.g., RAID 5 disk
failures). Consider the following “fundamental chain” [2] desig-
nating the relationship between failures, faults, and errors:

 failure  fault  error  failure  fault  …

An expanded diagram of anomaly relationships and propaga-

tions should include service degradations and hazards, as well
as events that cause transitions between states (see Figure 1
on following page).

Advertent or inadvertent attacks on a system are faulty and
exploit (activate) system faults. Some systems adopt oner-
ous procedures in an attempt to control fault activation. These

24 CrossTalk—March/April 2011

RUGGED SOFTWARE

constraints are not considered degradations by the system, yet
clients may feel differently and cancel the service. Thus, systems
seek to minimize the costs of error and failure control, but, since
methods are typically heuristics, additional degradations and
errors are frequently introduced.

Types of Faults, Service Degradations, and Errors:
A fault, when activated, causes a degradation of service or an

error, depending upon whether deviations from optimal service
states are within specified requirements. We introduce four
classes of faults, errors, and degradations for these anomalies
[3], as well as examples of each class:

a. Input/output values: Output and input values can imple-
ment data, such as digitally encoded numbers, letters, sounds,
images, and odors, or products, such as robotic movements. All
output values must be input at a specified location to complete
their service, but representations need not always be precise.
For example, consider hardware implementations of irrational
numbers. These produce deviations from actual values, but
usually satisfy client requirements. Perhaps an algorithm is
ported to a system that allocates fewer bits for representations;
arithmetic overflow can result. Unless exception handling can
catch and resolve overflow, perhaps using different numeric
representations, output will be erroneous. Or consider defec-
tive (faulty) computation that loses precision when summing
irrational numbers. If the result remains within specified devia-
tions, output degradation occurs but service can be maintained.
The same algorithm might generate an error in an application
that requires data of greater precision. As another example,
a scratch on an audio disk is a fault. When the disk is played,
resulting noise might be considered output degradation. Such
noise from a symphony disk is an error that will probably cause
the disk to be discarded. Error correcting codes on CDs enable

resolution of some noise, but such capabilities are limited. As-
sume that encrypted data have been input by an eavesdropper
via an unsecured wireless connection. If the data are decrypted
without authorization and confidentiality is part of system or
client requirements, errors have occurred; perhaps the encryp-
tion algorithm was faulty or the encryption key was stolen. Still,
we claim that the original data states do not lose their service-
ability unless output obtained via the decryption process renders
them invalid. (A data input with a non-matching key causes a
dependency to be assigned to the original data [3]. Unauthor-
ized output of the decoded data conflicts with and renders the
original data states unserviceable. Similar mechanisms cause
data inconsistency [3] in the lost update problem of databases.)
Unauthorized inputs are hardware issues as well, for example, in
advertent or inadvertent carbon monoxide poisoning. Output of
carbon monoxide into organs causes client failure. Degradations
in air quality can signal detectors to assist in failure prevention.

b. Timings: Timing mechanisms can be generalized to count
numbers of mappings per interval [3], including metrics such as
numbers of allocated resources, transmission rates, and cost
overruns. For example, a 56kbps bit rate on a dial-up modem
may be considered optimal, while a somewhat lower bit rate
is an acceptable deviation. A 56kbps bit rate on a broadband
connection is an error, possibly caused by a worm. Firewalls can
block worms, but they can cause delays and lost services as
they evaluate and block incoming traffic. As another example,
consider time and cost overruns, which are common degrada-
tions in many development processes. Overruns that exceed
specified deviations are errors and have resulted in the cancella-
tion of many projects.

c. Priorities: Priority mechanisms are relevant during com-
petition [3], establishing servicing orders and voting choices. For
example, operating systems dispatch high priority processes
before competing lower priority processes. If a priority inver-
sion occurs, so that a lower priority process is executed before
a dispatchable higher priority process, or before a dispatchable
process that blocks a higher priority process, the resulting delay
degradation is generally tolerable. If, however, the high priority
process has hard real-time requirements, errors and failures
will likely ensue. Priority inheritance mechanisms prevent many
types of priority inversions. Their implementation in a distributed
network, however, can be onerous, causing delay and other
degradations. As another example, dynamic network routing al-
gorithms select “shortest” paths using data received from other
routers. (They assign priorities based on computed metrics.)
Assume that the activation of hardware and/or software faults
causes a router failure. Routers executing a faulty routing algo-
rithm may then assign incorrect priorities. If computed paths en-
able packet delivery within acceptable delays, priority and delay
degradation results. If delays are inacceptable and packets are
discarded, errors and failures can result. Erroneous routing algo-
rithms may also select paths that do not satisfy system security
requirements, potentially causing input errors as well as failures.

d. Dependencies: Interrelationships between system
states and components are determined by dependencies. For
example, automobiles provide transportation services utilizing

Figure 1: Anomaly Propagation

CrossTalk—March/April 2011 25

RUGGED SOFTWARE

interrelationships between many different components. (Some
components, such as video players and coffee cup holders, are
nonessential for transportation.) A torn tire may be replaced
temporarily with a small spare of lesser quality, causing depen-
dency, as well as output (comfort) and other degradations. If
the replacement is also torn, transportation service becomes
unavailable. As another example, flexible data structures are
implemented with pointers that maintain dependencies between
objects. The execution of faulty pointer arithmetic can cause an
error in a linked list, so that traversal through a corrupted link
must fail. If the list is doubly linked, the traversal algorithm can
take the secondary path, resulting in dependency degradation.

All essential components of a system are bound together with
a set of dependencies, so that the failure of any component, if
not controlled, causes system failure. Dependencies for compo-
nents of nonessential services are conditional, allowing for their
abandonment; then other services can be continued in the de-
graded dependency mode of partial services [6]. Redundancies
enable component replacements to prevent failure. Replace-
ments may be fungible, of lower quality, of higher cost, or even
supply alternate services, such as occurs during the degraded
dependency mode of emergency services [6]. Replacements are
effective using design and data diversity or reflection [7]. De-
pendency degradation occurs when a replacement component
is of lower quality, assuming that the primary component was
correctly identified as malfunctioning. Priority degradation, on
the other hand, results when a defective voting scheme causes
the replacement of a correctly functioning primary component
with an inferior product.

Conclusion
Service degradations are the only immediate mechanisms for

error prevention after a fault has been activated. The monitor-
ing of degradations and appropriate adjustment of parameters
frequently forestalls the occurrence of errors. Systems that aug-
ment acceptable deviations in their service requirements, where
appropriate, enhance this fault tolerance mechanism.

Degradations of service also occur during error and failure
resolution. Recovery is enabled by system requirements that
tolerate deviations in acceptable service, such as non-optimal
values, non-optimal delivery metrics, non-optimal orderings, or
non-optimal service sets. Service degradations are integrated
into mechanisms for fault tolerance at all stages of the anomaly
lifecycle, with continual efforts to minimize their cost.

Our study of service degradations has yielded a classifica-
tion scheme and an original diagram illustrating the role of
service degradation in the propagation and control of anomalies.
We have also introduced amplifications for some commonly
accepted definitions. We expect future research to establish a
framework for errors and degradations that includes research
areas beyond the fields of software and hardware systems.

Acknowledgments
My appreciation to all of the reviewers for their suggestions.

1.	 ISO Reference Model for Open Distributed Processing, ISO/IEC 10746-2:1996 (E), 1996, at 	
	 <http://standards.iso.org/ittf/PubliclyAvailableStandards>.
2.	 Avizienis, A., Laprie, J., Randell, B., and Landwehr, C. “Basic Concepts and Taxonomy for 	
	 Dependable and Secure Computing” IEEE Transactions on Dependable and Secure
	 Computing, vol. 1, #1, Jan.-Mar. 2004, 11-33.
3.	 Levine, G. N. “Defining Defects, Errors, and Service Degradations” ACM SIGSOFT,
	 Software Engineering Notes, vol. 34, #2, March 2009, 1-14.
4.	 IEEE Computer Society, “Standard Glossary of Software Engineering Terminology” ANSI/
	 IEEE Standard 610.12-1990. IEEE Press, 1990. New York.
5.	 Goertzel, K. M. “Software Survivability: where Safety and Security Converge” Crosstalk, The
	 Journal of Defense Software Engineering, vol. 22, #6, Sept.-Oct. 2009, 15-19.
6.	 Mustafiz, S., Kienzle, J., and Berliz, A. “Addressing Degraded Service Outcomes and
	 Exceptional Modes of Operation in Behavioural Models”, Proceedings of the 2008 RISE/EFTS
	 Joint International Workshop on Software Engineering for Resilient Systems, 2008, pp. 19-28.
7.	 Rogers, P. “Software Fault Tolerance, Reflection and the Ada Programming Language”
	 Thesis for the Doctor of Philosophy, University of York, October 24, 2003.

Gertrude Levine, Ph.D. Stevens Institute,
is a professor of computer science in the
School of Computer Sciences and Engi-
neering of Fairleigh Dickinson University.
Dr. Levine has been writing a column in
Ada Letters called Reusable Software
Components since 1990. (One of these
columns was published in CrossTalk in
March 1992, #32, pp.13-17.) Her research
interests include the Ada language and
conflict control, specifically in operating
systems and networks.

Professor, Computer Science
Fairleigh Dickinson University
1000 River Road
Teaneck, NJ 07666
Phone: (201) 692-2498
Fax: (201) 692-2443
E-mail: levine@fdu.edu

ABOUT THE AUTHOR

REFERENCES

http://standards.iso.org/ittf/PubliclyAvailableStandards
mailto:levine@fdu.edu

26 CrossTalk—March/April 2011

RUGGED SOFTWARE

Introduction
Provably secure application software can only emerge from

a SDLC that treats security as a core element of every phase
and in post-deployment. By mandating security within the SDLC
itself, management in organizations can rest better at night
knowing their infrastructure is continuously working as their
defender rather than their enemy. When you address software
development as a completed system of phases, tools, activities,
and feedback loops, you can bring to life The Rugged Software
Manifesto [1] as your deeds match your words.

The U.S. Scheme for software assurance in government and
military applications relies on the Common Criteria (CC) Evalu-
ation and Validation Scheme, developed and operated by NIST
and the NSA. Critics complain that the CC is too heavyweight
and impractical, that it takes too much time, costs too much, and
flies in the face of the powerful commercial forces of “time to
market” [2].

While CC mechanisms and processes may not be terribly use-
ful for in-house custom developed software applications, many
of the concepts and features of the scheme most certainly are.
By selectively picking and choosing those software assurance
steps from the CC and leading practices in software security,
it’s possible to build out an infrastructure that produces provably
secure application software and provides real-time feedback
into the system that forces code with residual vulnerabilities
back into the SDLC for rapid remediation and redeployment. A
continuously secure ecosystem for software development en-
ables organizations to pay closer attention to building innovative
business features and less attention to process or “meta” issues
that affect software security and quality.

Catching Errors Sooner Lowers Overall Costs
From the earliest days of software development, studies have

shown that the cost of remediating vulnerabilities or flaws in de-
sign are far lower when they’re caught and fixed during the early
requirements/design phases rather than after launching the
software into production. Barry Boehm blames late inspection

An Ecosystem for
Continuously Secure
Application Software

Abstract: A software development ecosystem composed of nine
working elements makes it possible to continuously secure application
software throughout the entire Software Development Lifecycle (SDLC)
and while it’s in production use. By orchestrating the activity of these nine
elements, organizations and their leadership can reliably and repeatedly
produce high-quality software that can stand up to attacks or rapidly
recover from intentional or unintentional malicious activity.

Mark Merkow, CISSP, CISM, CSSLP, PayPal Inc.
Lakshmikanth Raghavan, CISM, CEH, CRISC, PayPal Inc.

for software errors as the cause of an increase of 40 to 100
times the cost that is required if the errors were caught sooner
in the SDLC [3]. Therefore, the earlier you can integrate security
processes into the development lifecycle, the cheaper software
development becomes over the long haul.

The tricky part is implementing a software development and
operational infrastructure in a large enterprise while making it
repeatable, scalable, and a natural part of the
organization’s DNA.

Building Blocks for Continuous Application
Software Security

An ecosystem for continuously secure application software
requires a robust and reliable infrastructure to make it work. The
basic building blocks needed to bring such an infrastructure to
life include the following: training and awareness; a Software
Security Group (SSG); Nonfunctional Requirements (NFRs);
reusable security Application Programming Interfaces (APIs);
security frameworks; software security tools; security of COTS
software; software security incident management; and continu-
ous security testing.

Once assembled, the complete picture should appear like the
one in the diagram below.

Figure 1: Building Blocks for Continuously Secure
Application Software

The SSG plays a central role in the ecosystem, providing
a crucial source for strategies, implementation, orchestratra-
tion, and governance for the tools and processes needed to
continuously improve the overall security of the software being
developed [4].

1) Training and Awareness
While training may not fit directly into any particular SDLC

phase, it plays a crucial role in improving the overall security and
quality of software. Training is a prerequisite for anyone who has
any role anywhere in the software development environment.

CrossTalk—March/April 2011 27

RUGGED SOFTWARE

All developers and other technical members of the software
design/development/test teams should undergo security train-
ing that explains the responsibilities of their role, establishes
the expectations for their part for security, and provides best
practices and guidance for developing and maintaining high-
quality software.

2) Software Security Group
A formal SSG, having its primary responsibility be the im-

provement of security of the SDLC and the software it produces,
is a core element. The role of the SSG includes the following:
define the software security strategy; develop the processes for
integrating security into all the phases of SDLC; roll out soft-
ware security tools for developers and testers; establish security
testing processes; oversee the development of security APIs
and frameworks; develop and deliver software security aware-
ness/training sessions; and define, track, and report the metrics
related to the success and progress of the overall software
security program.

3) NFRs
What software is expected to “do” is described by users in

functional requirements. These requirements show up in the
early development phases when a group of would-be users col-
lect to describe what they want. NFRs are the quality, security,
and resiliency aspects of software that only show up in require-
ments documents when they’re deliberately added. These re-
quirements are the outcome of software stakeholders who meet
to discuss the planned software. These stakeholders should
include the people who will use the system, the people who will
operate it, the people who will maintain it, the people who will
oversee the governance of the software development lifecycle,
security professionals, and the legal and regulatory compliance
groups who have a stake in assuring that the software is in
compliance with local, state, and federal laws.

The key to a successful software security program is to
establish a requirements analysis process within the SDLC that
treats nonfunctional requirements as equal citizens to functional
requirements. The SSG should establish processes to assure
that this regularly occurs and help the application development
organization to put together well defined and reusable NFRs.
For example, if your organization follows the agile development
methodology, “user stories” [5] are one method for requirements
collection that you can quickly apply. Stakeholders could use
these methods to capture nonfunctional requirements as well
as functional requirements. Some of the key NFRs that must
be considered include availability, capacity, efficiency, extensibil-
ity, interoperability, manageability, maintainability, performance,
portability, privacy, recoverability, reliability, scalability, security,
and serviceability.

4) Reusable Security APIs
Application developers have no business writing security

functions. Using security controls is different from building them.
A better bet is to build and promulgate standardized security
APIs for developers to re-use and integrate into their applica-
tions. These APIs perform the most important security functions
such as validation, encoding/decoding, cryptographic processes
like encryption, hashing, authentication, authorization, logging,

error handling, etc. The Open Web Application Security Project
(OWASP) Enterprise Security API [6] is one such API that any
organization can adopt and customize for its software develop-
ment and operational processes. Developers will need educa-
tion and training on using these security APIs and should be
prevented from developing their own.

5) Security Frameworks
In addition to reusing security APIs in custom development

work, security frameworks can help to automatically prevent
many well-known attacks like Cross-site Scripting [7], Cross-site
Request Forgery (CSRF) [8], and others. These frameworks are
built by a centralized application security development under
the guidance of the SSG and deployed to all production Web
applications. These frameworks automatically provide security
functions that counter well-known Web attacks. Many existing
frameworks like Spring, Struts, etc., have some security built-in,
but controls are frequently missing, incomplete, or wrong. After
analyzing the gaps in each framework, some of the typical cus-
tom frameworks that can be built and deployed in any applica-
tion infrastructure include: output encoding framework; input
validation framework; and CSRF framework.

Whereas APIs need to be explicitly used by developers, these
frameworks work invisibly and require no explicit action from the
developers. If developers fail to output encode the parameters
sent to an HTML page, these frameworks will automatically do
it for them.

6) Software Security Tools
Static Analysis of source code and Dynamic Analysis of

runtime modules provide significant value to any development
environment that honors secure applications. Developers need
regular access to static analysis tools for source code analysis
and to report security vulnerabilities. Quality Assurance (QA)
(testing) teams also require access to dynamic analysis tools
(also called black-box testing tools) for complete code coverage.
While we don’t recommend any specific vendors, we do recom-
mend that organizations perform an objective evaluation of all
available tools and select the ones that would work well with
their own environment and processes. Some existing reviews
done by NIST SAMATE Project [9] and NAVSEA [10] can be a
good starting point to begin the evaluation.

While there are multiple strategies to scan source code using
any of the commercially available scanners (e.g., Ounce, Fortify,
etc.), we strongly recommend a two-pronged approach to the
deployment model: an Integrated Development Environment
(IDE)-based version for developers to use at their desktops,
and a build process integration for effective governance and
management of the SDLC. With an integrated scan that runs
automatically when an application is submitted for a QA Envi-
ronment Build Operation, management can define gating criteria
that routes the application to the appropriate channels based on
the outcome of the source code scan.

IDE Integration for Developers:
To help developers scan the code they write early enough in

the lifecycle, you need to provide them with unfettered access
to automated scanning tool(s) so that they can perform scans
themselves, via an IDE running at their desktop computer.

28 CrossTalk—March/April 2011

RUGGED SOFTWARE

Scanning can be performed on a single function or method,
on a file or a collection of source code files, or on the entire
application system. This self-service scan will provide results
that developers can use directly to clean up their code based on
the findings. The scan report typically provides generic recom-
mendations on how to fix the identified vulnerabilities as well.
The OWASP Web Testing Environment (WTE) Project [11] is
one example of testing tools for developers that aims to make
application security tools and documentation readily available.
The WTE has several other goals too, including to: provide a
showcase for popular OWASP tools and documentation; provide
the best, freely distributable application security tools in an
easy-to-use package; ensure that the tools provided are as easy
to use as possible; continue to add documentation and tools to
the OWASP WTE; continue to document how to use the tools
and how the tool modules were created; and align the tools
provided with the OWASP Testing Guide.

Build Integration for Governance:
Build process-based scanning occurs when the entire ap-

plication (all modules and libraries) are ready to be built and
prepared for QA testing. This typically includes source code
components originating from different development teams and/
or different software development companies (e.g., outsourced
development shops). This centralized scanning is meant as a
governance and management mechanism and can be used
to provide gating criteria before the code is released to the
next phase in the SDLC. Typical gating criteria for production
movement might include zero high-risk vulnerabilities; no more
than five medium-risk vulnerabilities; no more than 10 low-risk
vulnerabilities, etc.

A software supply-chain risk can be a defect in the delivered
software or in the default installation or configuration that an
attacker can exploit [12] and a build-governance software scan
can help to uncover and eliminate errors that otherwise would
fall through the cracks.

You should use the build process-based scanning not only
for planned software releases but also for emergency bug fixes.
Since the scanning process is closely integrated with the build
process, automation takes care of assuring that source code
scanning happens every time. When the assurance level of the
automated scanner is high (not too many false positives), then
the build server can be triggered to fail the build based on the
gating criteria and send the application back for remediation.

Metrics that are useful to track for measuring performance
and progress could include: number and percent of applications
scanned using IDE scan; number and percent of applications
scanned using Build scan; number and percent of applica-
tions scanned using Build scan that failed/passed; vulnerability
density (vulnerabilities/thousand lines of code); vulnerability
severity comparison across projects or development teams; vul-
nerability category comparison across projects or development
teams; vulnerability category-specific trending; average time
taken to close high/medium/low-risk vulnerabilities; vulnerability
distribution by project; and top 10 vulnerabilities by severity and
frequency.

Dynamic Analysis (Black-Box Testing) During QA Testing:
In addition to functional testing of an application in the QA

environment, security testing using a black-box scanning tool
(like IBM’s AppScan) can help to catch any remaining vulner-
abilities that fell through all prior safety nets.

A bug priority matrix for the organization should include the
definitions of security defects that enable the QA team to create
separate security defect records and help classify their prior-
ity. The testing carried out by this independent team might also
serve as gating criteria for promoting the application from QA
testing to the production environment. The results from these
test results should be shared with the developers soon after
the tests are run, so the developers can develop strategies for
remediating the issues that are uncovered. Once the criteria
for moving an application to production are met, the QA team
should sign off on the security vulnerability testing, along with
the other test results. Black-box testing also ensures that other
minor feature additions and bug fixes are also tested for secu-
rity bugs before they too are moved to production. Furthermore,
centralized testing yields meaningful metrics as experience with
the tools is gained and progress (or regress) can be measured
and reported over time.

7) Security of COTS Software
When COTS software is used by custom-developed sys-

tems or offered as an infrastructure service, you may run into
problems when you discover vulnerabilities during preproduction
black-box testing and penetration testing. In most cases, when
problems are found with COTS systems, it’s difficult to identify
what to do about them or even determine who to contact. As us-
ers of COTS products, information protection and risk manage-
ment professionals are too far removed from the product devel-
opment activities. Today’s state of COTS security testing often
leaves software buyers with little ability to gain the confidence
they need to deploy business-critical software. In its absence we
are forced to develop our own countermeasures and compen-
sating controls to counter these unknown potential threats and
undocumented features of the software. As we mentioned in
the beginning of the article, because of any actual or perceived
shortfalls of the CC, commercial businesses are forced into us-
ing various other and related approaches to gaining confidence
in the security of COTS products. Here we take a look at two
common commercial approaches.

ICSA Labs:
The ICSA Labs certification is based on public, objective

criteria that yield a pass/fail result [13]. The criteria–drawn from
expertise across the industry–are clearly defined and address
common threats and vulnerabilities for each COTS product.
The criteria are applicable among products of like kind and can
therefore be used for better understanding, comparing, and as-
sessing security products.

Veracode’s VerAfied Software Assurance:
Delivered as a cloud-based service, Veracode’s VerAfied pro-

cess yields an analysis of final, integrated applications (binary
analysis) and provides a simple way to implement security best
practices and independently verify compliance with internal or
regulatory standards without requiring any hardware or
software [14].

RUGGED SOFTWARE

8) Software Security Incident Management
The SSG must work closely with other stakeholders like the

Security Operations/Monitoring team, Application Development
teams, etc. to put together a well-defined application security
incident management process. Even with controls throughout
prior phases of the SDLC, bad code still manages to wind up
in the production environment. A Security Incident Manage-
ment Process is needed to analyze, triage, and apply short-term
restoration fixes (such as application firewall rule changes), co-
ordinate long-term code level changes, and validate and deploy
security fixes.

 In his September/October 2010 CrossTalk article, “The
Balance of Secure Development and Secure Operations in the
Software Security Equation,” Sean Barnum advocates a holistic
approach that balances secure software development and
secure IT operations [15]. By including the appropriate participa-
tion from the development community, the incident management
process acts as the final safety net to protect the organization
from further damage once an incident is declared.

Some key success factors include the following: appropri-
ate stakeholder access to reports from continuous security
testing and monitoring tools; a unified bug tracking system that
everyone uses and provides end-to-end tracking and closure of
identified security bugs; and well-defined processes to iden-
tify appropriate source code owners to alert and engage them
about production vulnerabilities and to help develop, test, and
deploy security fixes.

9) Continuous Security Testing
The last piece of the puzzle completes the picture and pulls

together all the elements that compose the ecosystem. Continu-
ous testing using regularly updated black-box scanners set to
run automatically can help to assure that new vulnerabilities, and
those missed in prior development phases, are caught and acted
upon before anyone on the outside has the opportunity to find
them and exploit them. Scans can be scheduled based on any
number of factors related to the application.

Continuous security testing in the QA Environment of
production-released code, along with a well-defined feedback
loop that relies on the software security incident management
process, can alert the application owners about residual security
problems so they can be addressed immediately. As security
incidents are opened, the application is forced back into the
analysis or design phase of the SDLC and works its way back
through the SDLC, helping to assure that software is never
released and forgotten.

Conclusion
With a completed puzzle of symbiotic and synergistic ele-

ments working in concert, you can implement a well-orchestrat-
ed, well-oiled feedback system that over time will improve the
SDLC itself as experience is gained and processes and tools
are fine-tuned. Meeting the pledge of The Rugged Software
Manifesto includes improving the software development envi-
ronment itself as you improve your own skills. By inculcating
security activities and features into the entire SDLC and beyond,
you can rest assured that you’re doing all you can to address
and reverse the scourge of insecure application software.

Mark Merkow, CISSP, CISM, CSSLP works at PayPal Inc. (an
eBay company) in Scottsdale, AZ as a manager in the IT Security
Department. He has over 35 years of experience in Informa-
tion Technology from a variety of roles, including Applications
Development, Systems Analysis and Design, Security Engineer,
and Security Manager. Mr. Merkow holds a master’s in Decision
and Information Systems from ASU, a master’s of Education
in Distance Learning from ASU, and a bachelor’s degree in

Computer Information Systems from ASU. He chairs the Financial Services Information
Sharing and Analysis Center Education Committee, serves on the BITS Security Work-
ing Group and the Research and Development Committee of the Financial Services
Sector Coordinating Council on Homeland Security and Critical Infrastructure Protec-
tion. Mr. Merkow has authored or co-authored 10 books, including his latest, “Secure
and Resilient Software Development” (2010, Auerbach Publications).

	 Mark Merkow
	 9999 North 90th Street
	 Scottsdale AZ 85258
	 E-mail: mmerkow@paypal.com
	 Phone: (480) 862-7391

Lakshmikanth Raghavan (Laksh) works at PayPal Inc. (an
eBay company) in San Jose, CA as Staff Information Security
Engineer in the Information Risk Management area. He has
over nine years of experience in the areas of information secu-
rity and information risk management and has been providing
consulting services to financial services companies around the
world in his previous engagements. He is a Certified Ethical

Hacker and holds the CISM and CRISC certifications from the Information Systems
Audit and Control Association. Laksh is the co-author of “Secure and Resilient Soft-
ware Development” and holds a bachelor’s degree in Electronics & Telecommunica-
tion Engineering from the University of Madras, India.

ABOUT THE AUTHORS

1.	 Rugged Software. Web. 30 Sept. 2010. <http://www.ruggedsoftware.org>.
2.	 Merkow, Mark S., and Lakshmikanth Raghavan. Secure and Resilient Software Development. Boca Raton, FL: CRC,
	 2010. Print.
3.	 Boehm, Barry W., and Richard Turner. Balancing Agility and Discipline: a Guide for the Perplexed. Boston:MA,
	 Addison-Wesley, 2006. Print.
4.	 The Building Security In Maturity Model (BSIMM). Web. 30 Sept. 2010. <http://bsimm2.com/index.php>.
5.	 Introduction to User Stories <http://www.agilemodeling.com/artifacts/userStory.htm>
6.	 “Category: Enterprise Security API.” ESAPI. OWASP. Web. 30 Sept. 2010.
	 <http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API>.
7.	 “Cross-site Scripting.” Wikipedia, the Free Encyclopedia. Web. 30 Sept. 2010.
	 <http://en.wikipedia.org/wiki/Cross-site_scripting>.
8.	 “Cross-site Request Forgery.” Wikipedia, the Free Encyclopedia. Web. 30 Sept. 2010.
	 <http://en.wikipedia.org/wiki/Cross-site_request_forgery>.
9.	 NIST SAMATE - Static Analysis Tool Exposition. Web. 11 Nov 2010.
	 <http://samate.nist.gov/Main_Page.html> & <http://samate.nist.gov/SATE.html>
10.	 Software Security Assessment Tools Review. Web. 11 Nov 2010.
	 <https://buildsecurityin.us-cert.gov/swa/downloads/NAVSEA-Tools-Paper-2009-03-02.pdf>.
11.	 OWASP Web Testing Environment (WTE). Web. 15 Nov 2010. <http://code.google.com/p/owasp-wte>.
12.	 Ellison, Bob. Supply-Chain Risk Management: Incorporating Security into Software Development. 03 2010. DHS National
	 Cyber Security Division. 15 Nov. 2010
	 <https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/acquisition/1140-BSI.html>.
13.	 ICSA Labs. ICSA Labs. Web. 30 Sept. 2010. <https://www.icsalabs.com>.
14.	 Application Security | Veracode. Veracode. Web. 30 Sept. 2010. <http://www.veracode.com>.
15.	 Barnum, Sean. The Balance of Secure Development and Secure Operations in the Software Security Equation.
	 Crosstalk – The Journal of Defense Software Engineering. Vol 23 Number 5. Sept/Octorber 2010.

REFERENCES

Lakshmikanth Raghavan
2211 North 1st Street
San Jose CA 95131
Email: lraghavan@paypal.com
Phone: (408) 967-4637

mailto:mmerkow@paypal.com
http://www.ruggedsoftware.org
http://bsimm2.com/index.php
http://www.agilemodeling.com/artifacts/userStory.htm
http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://samate.nist.gov/Main_Page.html
http://samate.nist.gov/SATE.html
https://buildsecurityin.us-cert.gov/swa/downloads/NAVSEA-Tools-Paper-2009-03-02.pdf
http://code.google.com/p/owasp-wte
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/acquisition/1140-BSI.html
https://www.icsalabs.com
http://www.veracode.com
mailto:lraghavan@paypal.com

30 CrossTalk—March/April 2011

RUGGED SOFTWARE

Introduction
Software assurance is the level of confidence that software is

free from vulnerabilities, whether intentionally designed into the
software or accidentally inserted at any time during its lifecycle,
and that it functions in the intended manner.1 Once an organiza-
tion becomes aware of the need to meet software assurance
goals, the next step is to assess its current development and
procurement activities and practices. Such an analysis requires at
least two things. The first is a repeatable and objective assess-
ment process. The second is a clear benchmark or target that
represents a suitable level of risk management given the nature
of the organization and the software’s mission. Performing this as-
sessment periodically provides an ongoing understanding of the
maturity of respective software assurance capabilities.

Choosing a methodology for appraising an organization’s
ability to meet software assurance goals may seem overwhelm-

Edmund Wotring III, Information Security Solutions, LLC
Sammy Migues, Cigital, Inc.

Abstract. All organizations–government and commercial alike–share
an interest in minimizing their software vulnerabilities and, consequently,
in maturing their software assurance capabilities. Successful software
assurance initiatives require organizations to perform risk management
activities throughout the software lifecycle. These activities help to ensure
organizations can meet software assurance goals, including those related
to reliability, resilience, security, and compliance. The Software Assurance
(SwA) Checklist for Software Supply Chain Risk Management (hereafter
referred to as the SwA Checklist) serves as a framework to help organiza-
tions establish a baseline of their risk management practices and select
maturity model components to better meet evolving assurance goals.

ing because there are several maturity models available, each
with their own focus and level of granularity. For an organization
that may be new to the area of software assurance, it can be a
challenge to simply find good sources of guidance, much less
understand which parts of each model are best suited for its en-
vironment and supply chain. Although finding the right maturity
model may seem challenging, organizations should not wait for
an authority to mandate a software assurance initiative. Such
mandates are typically intended to be “one-size-fits-all” and of-
fer limited flexibility. Organizations are best served by tailoring a
software assurance strategy to their own supply chains.

Selecting the best maturity model, or model components, for
a particular organization to begin addressing assurance goals
may also present a time-consuming learning curve. In order
to facilitate an understanding of how multiple maturity models
address similar assurance goals, the authors created a model-
agnostic framework as part of participation in the SwA Forum
Processes and Practices (P&P) Working Group (WG), which is
co-sponsored by organizations with DHS, DoD, and the National
Institute for Standards and Technology. This analysis involved
mapping maturity models, and their respective practices, within
the framework. The agreement among the models provides
a valuable reference. This framework evolved into the SwA
Checklist, which serves as a model-agnostic harmonized view of
software assurance guidance.

The SwA Checklist can help organizations begin a dialogue
amongst the entities in the supply chain that influence and/or
support the software throughout the lifecycle. Using the check-
list to characterize each of the organizations in a given supply
chain provides extraordinary insight into the credibility or trust
deserved by a given piece of software. By leveraging this insight,
organizations can verify implicit assumptions that certain prac-
tices are taking place and align their activities with assurance
goals to mitigate risks within their supply chains. Organizations
can also use the checklist to organize evidence for assurance
claims while assessing all of its practices as it performs the ac-
tivities necessary to complete its baseline. Finally, organizations
can use the baseline to engage their senior leadership regard-
ing the areas in which resources are needed to meet assurance
goals based upon guidance from the mapped models.

The SwA Checklist provides a consolidated view of current
software assurance best practices in the context of an orga-
nized SwA initiative. The checklist is currently implemented as
a “hot linked” Microsoft Excel spreadsheet that provides a cross-
reference of goals and practices with side-by-side mappings
to several publicly available maturity models. Organizations can
use the mappings to identify where the maturity models agree
and diverge, and use this consolidated format to select model
components best suited to their environments.

Once an organization establishes its assurance goals, selects
a maturity model (or model components), and captures its
baseline, it can then establish an improvement plan for achieving
software assurance goals as it develops and/or acquires secure
software. Working with its direct customers (downstream in the
supply chain) and suppliers (upstream in the supply chain) to
improve software assurance will have a large multiplier effect as
the approach spreads to other organizations.

Ensuring
Software
Assurance
Process
Maturity

CrossTalk—March/April 2011 31

RUGGED SOFTWARE

Intended Use
The intended users of the SwA Checklist are organizations that

currently are or soon will be acquiring or developing software. Or-
ganizations may have many options when developing or acquiring
software from various sources. Although vendors and developers
may offer software that meets specified functional requirements
and provides myriad features, these offers are inconsequential
if the data and functions are not protected. Developers and
acquirers must give significant consideration to the ability of the
software to reliably function and protect data and processes over
the life of the product. Organizations can use the SwA Checklist
to guide their own development or to evaluate vendor capabilities.
Organizations can use the baselines they establish to facilitate an
understanding of similar assurance goals and practices among
several freely available maturity models, which can help guide the
selection of the most appropriate model components.

Design of the SwA Checklist
The SwA Checklist is available at no cost at <https://buildse-

curityin.us-cert.gov/swa/proself_assm.html>. The SwA Checklist
is currently being vetted and we request your feedback based
upon practical use within the field. A feedback form is available
at the same URL above. The authors designed the checklist to
be understandable by users with various levels of SwA experi-
ence (readers are invited to download a copy now and review it
while reading this section).

The SwA Checklist contains multiple tabs/worksheets includ-
ing the following: Intro, SwA Checklist, Sources, BSIMM, CMMI-
ACQ, OSAMM, PRM, and RMM. The “Intro” tab serves as the
introductory section that also provides pointers to each of the
included models. The “SwA Checklist” tab provides the informa-
tion that enables users to perform their analysis. Content from
the included models is organized into five domains: Governance,
Knowledge, Verification, Deployment, and Supplier Manage-
ment. This categorization helps to harmonize terminology and
makes it easy for the user to locate specific guidance. Within
each domain are three categories containing a short, high-
level goal and a set of three corresponding practices. There is
a “Status” cell under each practice. Users can click on the cell
to open a pull-down menu with pre-defined responses to input
their organization’s implementation status for each practice. The
range of possible status levels in the pull-down menus includes
the following:

•	 Unknown
•	 Not Applicable
•	 Not Started
•	 Partially Implemented Internally
•	 Partially Implemented by Supplier(s)
•	 Partially Implemented Internally and by Supplier(s)
•	 Fully Implemented Internally
•	 Fully Implemented by Supplier(s)
•	 Fully Implemented Internally and by Supplier(s)

It is the combination of the status of each practice that will
help an organization understand its ability to execute on soft-
ware assurance activities in development and acquisition.

The implementation status options vary based upon the degree
to which the practice is implemented (i.e., not started, partially
implemented, or fully implemented) and the party responsible for
each practice (i.e., internally, by the supplier, or by both). The two
other responses included in the pull-down menu are “Unknown”
and “Not Applicable.” The user should follow up on any response
marked with either of these statuses. Organizations should
mark a practice “Unknown” if it is unknown whether someone is
performing the practice or who is responsible for performing it.
Such a practice is almost certainly an area of increased risk and
requires further investigation. Likewise, if a practice is marked as
“Not Applicable,” the user should obtain justification for selection
of that status. Supply chain partners must understand the environ-
ment in which the software will be deployed and meet the end
customers’ assurance needs even if those needs are not explicitly
stated. When assurance goals are analyzed from such derived re-
quirements, certain practices may reveal themselves as applicable.
Thoroughly investigating the status of each practice is a valuable
due diligence exercise that may result in the user discovering
that certain practices actually are applicable or that practices are
already being performed as part of other related practices.

By performing the analysis required to assign a status to each
practice, the user gains a greater understanding of their overall
supply chain and establishes an assurance baseline. This under-
standing will enable more productive dialogue among all supply
chain parties and will foster better understanding of where risk is
introduced during acquisition or development of software.

Maturity Model Mappings
The third tab of the spreadsheet, Sources, includes all the

same goals and practices from the SwA Checklist tab. Table 1
contains a portion of this view. The Sources tab also includes
mappings for each practice to several maturity models, described
in the sidebar to this paper on page No. 32 titled Maturity Models
(Maturity Models Mapped within the SwA Checklist). All mappings
are hyperlinked to other tabs in the spreadsheet. Clicking on a
hyperlinked mapping will take the user to the related section on
the tab for the corresponding maturity model. The user can return
to the Sources tab by clicking on the hyperlinks in column A of
any of the maturity model tabs.

There are several benefits to viewing the mappings for each
practice in the SwA Checklist side-by-side in the Sources tab.
The mappings help the user to see how the maturity models
agree and diverge on each of the related practices. Since each
model has its own particular focus, viewing the relationships

Another tool that is mapped to multiple maturity models, the SwA Self-
Assessment, is also available on the same webpage on the DHS SwA
Community Resources and Information Clearinghouse website. The SwA
Checklist and the SwA Self-Assessment are resources made available
from the SwA Forum. The tools provide alternative views on similar
assurance process frameworks whose shared objective is software im-
provement. It is in an organization’s best interest to try both approaches
and use the one that works best for its own environment. No matter
which tool users select, it is important to remember the ultimate goal is
producing and delivering rugged software.

SwA Tools Relationship

https://buildse�curityin.us-cert.gov/swa/proself_assm.html
https://buildse�curityin.us-cert.gov/swa/proself_assm.html
https://buildse�curityin.us-cert.gov/swa/proself_assm.html

32 CrossTalk—March/April 2011

RUGGED SOFTWARE

among them provides a context from which the user can better
understand the assurance goals and practices. The user will also
see how various models address similar goals and practices.
This will help the user begin selecting a maturity model that will
be of most use to their particular software assurance needs.

Table 1: Sources Tab Snapshot

Appraisal Considerations
When performing an appraisal using the SwA Checklist, it

is important that the user adapt the checklist to the processes
being performed and the structure of their organization’s supply
chain. Users may determine that they implement a different
practice that also supports an assurance goal in the check-
list. This is typical since not all organizations employ the same
practices despite desiring roughly the same assurance goals.
Users may also perform an evaluation of a supplier or a division
of an organization that only manages a portion of the processes
in the overall supply chain. In this case, it is likely that not all the
goals and practices within the checklist will apply to this specific
supplier or division. Users should leverage the SwA Checklist to
determine whether they are taking a comprehensive approach
to produce rugged software throughout the entire supply chain.
This approach may require evaluating multiple suppliers, divi-
sions, and other entities to comprehensively manage risks and
to ensure supply chain partners meet assurance goals.

The mappings of the models in the Sources tab provide valu-
able reference and context as users complete a baseline. As
users become more aware of how the models address similar
goals and practices, they may begin to find currently unimple-
mented model components that are useful for their environments
and specific assurance needs. The models referenced within the
checklist are designed with varying levels of granularity ranging
from high-level control objectives to lower level controls. Each of
these perspectives may provide insight into addressing the assur-
ance challenges in various supply chain environments.

Baseline Summary
After users establish a baseline, a summary displays at the

bottom of the SwA Checklist tab. This summary depicts a count
of each category of implementation status and is highlighted in a
conditional formatting color scheme according to the following:

“Not Applicable” practices – Grey
“Unknown” and “Not Started” practices – Red
“Partially Implemented” practices – Yellow
“Fully Implemented” practices – Green

This system provides an easy-to-view dashboard for an orga-
nization’s overall implementation of practices.

The color-coded system provides a way to quickly assimilate data
contained within the user-created baseline. Although the system
uses stoplight colors, improvement efforts should not focus solely
on the “reds” and “yellows.” A practice highlighted in green does not
necessarily satisfy the organization’s assurance goals or adequately
mitigate risks. Further, a practice highlighted in green is one that is
being performed, not necessarily one that is required. Organizations
must analyze the entire checklist to determine if the correct entity
performs each practice correctly and to a sufficient extent, and if
each practice is actually mitigating risks according to the organiza-
tion’s assurance goals. Only after determining these factors can the
organization outline a plan to effectively and efficiently improve its
software assurance capabilities.

There are several freely available maturity models that focus on
securing software. Each has its own focus and level of granularity. The
publicly available maturity models mapped in the Sources tab of the SwA
Checklist include:

•	Building Security In Maturity Model version 2
	 <http://www.bsimm.com>

•	Carnegie Mellon University SEI CMMI® for Acquisitions, version 1.2 		
	 <http://www.sei.cmu.edu/cmmi/index.cfm>

•	Open Web Application Security Project Open Software Assurance 	 	
	 Maturity Model version 1.0 <http://www.opensamm.org>

•	Software Assurance Forum Processes and Practices Working Group
	 Assurance Process Reference Model, September 2010
	 <https://buildsecurityin.uscert.gov/swa/downloads/20100922_PRM_
	 Practice_List.pdf>

•	Carnegie Mellon University/CERT Resiliency Management Model,
	 version 1.0 <http://www.cert.org/resilience/rmm.html>

The authors performed a model-agnostic analysis to determine how
these maturity models help organizations address assurance goals and
practices and to determine where the models converge and diverge. This
analysis of the mappings between the models revealed a high degree
of agreement. Organizations can use the checklist to determine process
improvement opportunities and establish a baseline from which to bench-
mark their capabilities. More information on the maturity models analyzed
and included in the SwA Checklist is available at <https://buildsecurityin.
us-cert.gov/swa/proself_assm.html>.

Maturity Models

 Governance

 Strategy & Metrics Policy & Compliance Training & Guidance

Practices Establishes Security
Plan; communicates
and provides training
for the plan

Identifies and
monitors relevant
compliance drivers

Conducts security
awareness training
regularly

BSIMM SM1.1 CP1.1 T1.1

 - CP1.2 T3.4

CMMI-ACQ PP SG2 – SG3 OPF SG1 OT SG2

 - - -

OSAMM SM1B PC1A EG1A

 - PC1B -

PRM SG 2.1 SG 3.1 SG 1.3

 SG 1.3 - -

RMM RTSE: SG2 – SG3 COMP: SG2 OTA: SG1 – SG2

 MON: SG1 MON: SG1 – SG2 -

http://www.bsimm.com
http://www.sei.cmu.edu/cmmi/index.cfm
http://www.opensamm.org
https://buildsecurityin.uscert.gov/swa/downloads/20100922_PRM_Practice_List.pdf
https://buildsecurityin.uscert.gov/swa/downloads/20100922_PRM_Practice_List.pdf
http://www.cert.org/resilience/rmm.html
https://buildsecurityin.us-cert.gov/swa/proself_assm.html
https://buildsecurityin.us-cert.gov/swa/proself_assm.html

CrossTalk—March/April 2011 33

RUGGED SOFTWARE

Common Appraisal Challenges
The most common issue users face when creating a baseline

pertains to practices for which the status is “Unknown.” In these
instances, the best approach may be to document the process
flow surrounding the practice. It is helpful to coordinate with the
parties involved in processes surrounding the practice to deter-
mine the degree to which the process is implemented. Deter-
mining responsibility for each practice is another common issue
faced by users. Appraisers should diligently clarify accountability
and responsibility during their analyses. The third frequently aris-
ing issue is tracking execution of software assurance activities
and ensuring suppliers and acquirers do them consistently and
effectively. Even when users know what practices are imple-
mented and who is responsible for them, they may be unaware
how well they are implemented. Lastly, if users know a practice
is implemented, who is responsible for its implementation, and
whether it is executed correctly, they still may not know whether
it is effectively reducing risk and should be continued.

Even though the practices marked as “Fully Implemented”
on the checklist will register as green, this does not necessarily
mean they represent money (or resources) well spent. It is im-
portant for organizations to select components from the source
models to improve the implementation of practices specifically
required to meet assurance goals and to ensure their satisfacto-
ry completion. It is important to measure not only the assurance
activities, but also the software lifecycle artifacts (e.g., code) to
ensure both are improving. Overall, organizations should deter-
mine the model components that help them accomplish a coher-
ent and cohesive set of activities that accomplish organizational
goals based upon business objectives and risk appetite.

Conclusion
Establishing an implementation baseline of the practices

within an organization’s supply chain will foster a better under-
standing of its true capability to develop, acquire, and deploy
secure software. Using the checklist, an organization may
identify opportunities for improvement and begin to create a
plan to address improvement areas by selecting model compo-
nents from the mapped maturity models. The more robust the
processes are surrounding software lifecycle processes, the
more likely an organization will develop and acquire truly rugged
software. The SwA Forum P&P WG plans to periodically update
the SwA Checklist to ensure it aligns with updated versions of
the models mapped in the Sources tab and to incorporate other
models into this mapping in the future.

Acknowledgements
This work is funded in part by the DHS Software Assurance

Program. Many colleagues and members of the Software As-
surance community provided valuable feedback on the checklist
and this article including: Joe Jarzombek, DHS; Don Davidson,
OASD-NII / DoD CIO; Michele Moss, Booz Allen Hamilton; Lisa
R. Young, CERT; Walter Houser, SRA; Doug Wilson, Mandi-
ant; Rama Moorthy, Hatha Systems; and Dr. Robin A. Gandhi,
Nebraska University Center for Information Assurance.

Disclaimer:
® CMMI is registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

Edmund Wotring III is a Senior Security Engineer with
Information Security Solutions, LLC. He previously support-
ed various federal government clients with security compli-
ance and process improvement initiatives. He has advised
senior leadership to ensure compliance processes facilitate
effective security. He currently supports the Department
of Homeland Security National Cyber Security Division’s
Software Assurance program.

E-mail: ed.wotring@informationsecuritysolutionsllc.com

Sammy Migues is a Principal and Director of Knowledge
Management at Cigital. He has nearly 30 years experi-
ence performing security research and providing practical
solutions to government and commercial customers. He
is currently working on expanding the BSIMM research,
smart grid security demonstration projects, new methods of
software security training, and helping organizations start or
grow software security initiatives.

E-mail: smigues@cigital.com

ABOUT THE AUTHORS

1.	 Committee on National Security Systems (26 April 2010). CNSS Instruction No. 4009. National Information Assurance
	 (IA) Glossary. [Accessed 02 Nov 2010]. Available from: <http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf>.

NOTES

mailto:ed.wotring@informationsecuritysolutionsllc.com
mailto:smigues@cigital.com
http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf

34 CrossTalk—March/April 2011

BACKTALK

Password saturation is a bane of the 21st century. Passwords
are required to access pay statements, approve leave, buy
music, change insurance deductibles, bid on auctions, check
social networking sites, check e-mail, and so on.

To alleviate the inconvenience of inevitably-forgotten
passwords, some sites use security questions to differentiate
between legitimate users and hackers trying to break into that
user’s account. This is a sound idea; however, its implementation
is often fundamentally flawed. There are too many bad security
questions, and far too few good ones. System architects have
simply not done a good job designing foolproof questions.

Take my (least) favorite security question, “What is your favorite
color?” At first glance, this may seem sensible. But I don’t have one
favorite color; my favorite colors vary with the seasons. In October, I
love the warm glow of a burnt orange; in December, a Spruce green;
in springtime, the brilliant magenta-pink on my redbud tree. Besides,
when I’m asked to name a favorite color, I typically wonder, “Am I buy-
ing a new necktie, new underwear, a new sofa, or a new car?”

Questions about “favorites” make rather crummy security
questions because “favorites” fluctuate according to mood, situ-
ation, and circumstances.

Questions that prod me to remember my childhood are
particularly vexing too. Not that my childhood was traumatic (it
wasn’t), but my memory is getting faulty. Ask about my “first”
or “favorite” anything from childhood, and I’m likely to give you
a different answer eight months later. “What was your favorite
Christmas present as a child?” What kind of question is that?

Consider the list of available security questions at the Air
Force’s Advanced Distributed Learning Service. Users of that
system must select not two, not three, but six security questions,
from a list that references cartoon characters, friends, sports, TV
shows, and food. Here’s the complete list, along with my initial
reactions (which invoked great angst, upon realizing I’d be lucky
to remember even one of these answers):

“Who was your favorite cartoon character as a child?” (Do The
Simpsons characters count? Or only Itchy and Scratchy?)

“What was the name of your best friend as a child?” (I had a
new best friend every time I changed schools.)

“What was the name of your favorite teacher in high school?”
(Do I still have to call her Miss Simmons? Or can I call her Ann
now?)

“What was your first job?”
(Which came first: babysitting or cutting grass?)

“What was your favorite sport as a teenager?”
(To watch, or to play?)

“What was your favorite TV show as a child?” (All that time
wasted in front of the TV and I have to pick just one?)

“What was your first pet’s name?” (Do goldfish and hamsters
count? What about pet rocks?)

“Who was the first presidential candidate for whom you
voted?” (In the primaries? Or in November?)

“What was the make and model of your first car?”
(First car I drove? Or first car I owned?)

“Who was your childhood hero?” (Fictional? Or role model?)

“Who did you go with or take to your high school prom?”
(Which prom? I went twice.)

“If you had chosen your first name, what would it have been?”
(When people choose their own names, we get names
like Lady Gaga.)

“Who was your first love?” (Do I still have to call her Miss
Simmons? Or can I call her Ann now?)

“What is your favorite American landmark?”
(Can Daytona Beach count as a landmark?)

“What is your favorite Science Fiction character?”
(I don’t remember the names of Asimov’s robots.)

“What is the name of the first National Park you visited?”
(I remember getting carsick, but I don’t remember the
name of the park.)

“What was your favorite food as a child?”
(Breakfast, dinner, or dessert?)

“What is the name of your favorite sports team?”
(The last home team to win a championship.)

As a software engineer, I’m amazed when such inane ques-
tions get past design reviews and acceptance testing to the point
where literally thousands of government workers must scratch
their heads in frustration, spending countless man-hours deliber-
ating about which program they liked more as a child (was it Mork
and Mindy? or Star Trek?), then spend even more time debating
coworkers about whether or not Wii counts as a sport.

Personally, I prefer questions that fluctuate less. What is your
oldest sibling’s middle name?

John Reisner
Air Force Institute of Technology
School of Engineering and Management
john.reisner@afit.edu

What Is Your Least
Favorite Security
Question?

mailto:john.reisner@afit.edu

CrossTalk—March/April 2011 35

RUGGED SOFTWARE

Zero Software Defects
Systems Engineering
Software Acquisition
Agile Systems Engineering
Software Technical Readiness
Understanding Systems Weaknesses
Human Capital/Workforce Development

WITH

SYNCing-UPSYNCing-UP

23rd Annual

Opening General Session
Status of the NRO
Bruce Carlson, Director
National Reconnaissance Office
Speaker Lunch
Ultra-Large-Scale (ULS) Systems
and Their Impact on the DoD
Douglas C. Schmidt
Software Engineering Institute
(SEI)
Plenary Session
Stevens Award
Closing Session Speaker Lunch
Addressing the Challenge of
Protecting Our Software
Intensive Systems
John M. Gilligan
Gilligan Group, Inc.

 120 + TECHNICAL

PRESENTATIONS

 COLLABORATIVE

NETWORKING TRAINING AND

CERTIFICATION OPPORTUNI-

TIES AT A REDUCED COST

 TRADE SHOW

 SCENIC LOCATION

Plan now to join us for excellent, quality presentations and
networking with colleagues from military/government,
industry and academia.

Registration Now Open Register Today! www.sstc-online.org

Research
Real World Lessons
Guidance, Policy & Standards
Concepts & Trends
Technological Tools Advances
Cyber Technologies
Modernization of Systems

Presentation Topics Include…

As a reminder, CrossTalk is now completely electronic.
New issues will be posted six times a year on CrossTalk’s
new website, <http://www.crosstalkonline.org>. Please
update your browser’s bookmarked CrossTalk URL to
reflect the new web address. If you are currently subscribing
to CrossTalk’s RSS Feed, please note the feed URL has
also changed to
<http://www.crosstalkonline.org/issues/rss.xml>.

Each new issue will be available online both as a down-
loadable PDF file and also as a Flash-based digital flipbook
viewable within a browser and designed to mimic the look
and feel of a printed magazine.

This change reduces our carbon footprint and allows us to
bring the Journal of Defense Software to our readers in their
preferred and most convenient formats. This is also Cross-

Talk’s first step towards reaching new reader devices and
enhancing the suitability of the journal for our increasing
electronic readership.

To help guide the transition to other digital formats, we
have posted a brief reader survey. Please take a moment to
participate in the survey by clicking on the “Take the Survey”
button on the <http://www.crosstalkonline.org> home page
or by visiting <http://www.crosstalkonline.org/survey>
directly. Data gathered from this survey will be used to help
determine future CrossTalk digital and mobile formats.
Your input into the future direction of CrossTalk is greatly
appreciated.

Thank you for your continued support and from all of us at
CrossTalk, best wishes for the New Year!

Justin T. Hill
Publisher
CrossTalk, The Journal of Defense Software Engineering

CrossTalk
Now Online-only

http://www.sstc-online.org
http://www.crosstalkonline.org
http://www.crosstalkonline.org/issues/rss.xml
http://www.crosstalkonline.org
http://www.crosstalkonline.org/survey
http://www.navair.navy.mil

CrossTalk thanks the
above organizations for
providing their support.

https://buildsecurityin.us-cert.gov/swa/about.html
http://www.navair.navy.mil/
http://www.acq.osd.mil/se/
http://www.mas.hill.af.mil/

	Cover
	Table of Contents
	From the Rugged Software Community
	Crumple Zones
	Stop the Flow
	The Need for Functional Security Testing
	Fault Tolerance With Service Degradations
	An Ecosystem for Continuously Secure Application Software
	Ensuring Software Assurance Process Maturity
	BackTalk
	Back Cover

